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Errata and Addenda to the Final Report DA-36-039 SC-75081

art I.
1, p2,L 7 Amplification

The :I.npxit is in "string" format, i.e., as a concatenaticn of cha
frqm- tiie 20%, alphabet, The only formal structure to such a string
it has a beginning (1st character) and an end{last character).

The transformation to '"iree" form is accomplished by differentis
behavior of the 20'\ translator on observing certain character combi
in thé input string. The "tree® form has punctuation introduced —-

and"}% which permits tha dac,;xnpo_sition ef the input string i_hto ley
(and thereby sub-levels, etc.)

2. p2, L12

A terminal such. ,m,;}.' A terminal such tiwme,

3. p3; L 16 Awplificetion
"Atamic™ machline instructions are thosz wired in commands, or sc

even those precampossd in fixed order from such commands.

bo p5; L 6 Amplification

2s= is a metalinguistic connective mearning " is defined as", i.e.

axzh means a is defined as b.

5. P8, L 14
(dentitserdzzz@ettor) ... ~y (lettody [ fdentister) (etter) [
(identitier){atgity/
<specia.1 register 1dehtii‘ier>
6. pll, L 4= 2,
(7~ (3

1, a~yp » means a is raplaced by b
o L 8 moans 8th line from the bottom

N



7- pl2, L9
(8 ~> (7 _ Rl 7 o r v Lerein

8. L 5- Amplification

Element sequencing is explained in detail in (7. Suffice it 'bo say
here that its purpose is to examine symbols indegendéntg of the structures
in which they are imbedded. Word and list sequencing on the ;ather hand

are structure dependant..

9. pl7, L 12 insrt (k,v) ~p isrt (k,v)
Amplification: if k is missing, it is assumed to be 1.

10, pl8, LI ~»3.3 Arithmetic Expressions

1. L& <primary) 22T ... ~F
primary) 23T ... /( (arithmetic e:;pression))/
(row primry |(Eolumn primary

note: for use of (row primary) and (column pxﬂ.mary) see section 5.2.3.4
f’ 3 ‘(.&l. Ko as

12, p28, L 13 Amplification
32, 767 = 215—1 and obviously assumes a computer with that sige memory.

13. L 22ff  Amplification
3.7.2.1 The vertical bar here used is not to be confused with the

metalinguistic connective "or'". This meaning is given in 3,7.3.
b yptanin, Vo gkt Cf | pruovasbece, me@u Vo “g
1. p29, L4  about them. f\)about them (see page 43).

15. p37, L3 Statement 1f ~5 statement it

€ 41, L 7  These examples correspond —=»

These examples of procedure statements correspond tc¢ examples

of procedure declarations given in section 5.4.2.



17. p42, L 6
Procedure heading ~» procedure déclara,t.idn heading

18, phhy L1  4.9.9.~>4.9.1
19. L1 (ACty P oo ~»(AL YL, P oo

20, pi7, L 2  4insertion after
<storage. function)""éritlmetic exprossion>

2. L6 insertion after °
<Qound poir sot? et [ <bound‘ pair list}j <storage function)
, [ {vound pair liat)]
22, L7 [(bound pair 1ist)] ~» Kbound pair aet)][

23, L15 insertion after
| r_;eg_l_m E’ﬁ.:n, l:n] (n=~£'+l) x (&‘ =1) +Q-1
see 5.2.3.4. for the semantics of <storage function’y ;
2,, p48, L 2 insertion after
5.2,.3.4, Storage function:
An arithmetic expresssion which is a mapping of a two dimensional
array of information into a one dimensional ordered set of information.
A systemactic method of specifying the row and columr indices of the
ele.nents in a two dimensional airay has to be made, While this can be doné
by deﬁning the storage function as a procedure with formal parameters this
complexity is absurd since very few uses of storage functions will require
the procedure mechanism. Thus one should specialize on two characters
representing the row, e.g., € , and column, e.g., Dla indices for which sub-
stituiion 1s made ty evaluaticn of the expressién each time and element of




l‘o

the array is to be identif.iedo{. The ddfinition of these special characters
can be imbedded in the syntax by adding to the definition of arithmetic '
expressions the syniactic types <row prj.muy) and <column primm? as
in section 3.3.1. The chara;cterl f‘ and O (or their equivalents) can be
added to the 20 AL alphabet.

25. pso, L Lk ; Cepecification partP... —~
value part) Cspecification part)
2. p52, L1 The use of ... ~>p
The use of Procedure Statements (see 4.7) and / or Punction Designators
(300 392) coo

27, P 55’ L 9’ L 11 delete !
PartII.
28, p99, 7t 2 discussed and ~» discussed (see Part I) and
29, pl00, L1 delete
30. L1~ or combination ~yor combination of :
31, plo2, L 5 101.1 ~»101
32. pl12, LS coo®X<N) (divides ... ~>»

sao & X< ) /A =7 (divides ...

33. pl12, L 7 begin 1f (divides ... ~F
begin if —v (divides ...

34. pll3; L1 delete

35. L5 insert

where # is used to represent multiplication



5a

36. pll8, L 10 insert
Here, the last two digits repre: the exponent, p, of a floating

point number where the exponent is represented as p + 50.

370 p120, L8 oooﬂb?ia ia>oco /\?
noohb?ia A a7 Aa

38, L 10O ia ba~yiaYba
39, L11 ia) /ra ¥ ia) A 7a
10, L 12 ¢z (ba bb); ~7

= -71(ba A bb);

41, pl22, L 22 insert
Thz notation ..... represents intervening statements immaterial to

the points under discussion.

42, p 123, L 12 t=C 2-B ~p»:2C+ 2~ B}
3. pl25, L 7 insert after

where Ti(x) = 3 p2 +p

and  To(X)=p’ - 2p

o L Ui Ri=Zp ooo ~pR:Z= pf‘2+3xp;
45. L 14 RiZp oo ~pS:= pP3 -2 xp;
k6. p 130, L 3~ VAl 2wmEl~>wn[] +w[];
47 p 131, L 14 amplification

p =101 (2) and p =5 (10)

p = 101 in binary and p= 5 in decimal, respectively-

48, Bibliography append

7. Evans, A, Jr.; Perlis, A. J.; Van Zoeren, H.; The use of threaded
lists in constructing a combined ALGOL and machine-like assembly
processor. Comm. ACM 4 (January 1961, 36-39-



Part II.

49.

50:\

51.

53.

5l+a
55-

56.

57.

58.

59.

60.,

p 58 L1

£

A A
a20L a 20 L running

append

where &2 dencotes a blank, and Bt denotes the block tag.

p6éoLs

insert

where CBT is the Code Block Table.

L 6-

notgtion, In

~~3 notation and & is some (at most) binary operator.

L 5-

missing.

~~p missing depending on the operator.

pbl L 1, 2
LS

L8

L2

go to
p 62, L 9~
p é4

p639 LS

, Lk
, L8

, L21

9L2-

delete
or all—~yof all

insert

subtraction

insert

Jump

transfer

whe =Zght of-~pthe left of
page number should be 63.

the @ code —~p the &S code

" n
in IS~¥%in the input ssquencs IS8
in, I € ana wFPin , IS and GS-
will be ~2will often be

of the form~»of that form




7-

61. p 6L, L 8- insert

Note: In the following ¥ardOS, I and IS, refer interchangeably
to output and input sequences, respectively. Similarly isrt and insrt
are used interchangeably. '

62, bottam

Note: ‘Blend' is inserted by the main deelaration and means block end.

63, p 65, L6 insert
" MT % 18 e transfer to theé routine & siich that < upon completion
returns to the statement following the statement MT &
sL 1= replace by
BT [ #f := Bt, | (), (5)
isrt (of,¢d), next (oL, £7) := tblend’
Notes: The verticalf is used in the sense of address expressions
(see section 3.7).
The routines isrt(X) and next (B) are defined in reference 3 and.

essentially cause an empty site to be inserted following the sited(;

and the site one beyond the pointer for # to be referenced; respectively.
&4, p 66, L 2-

Note: the digit 1 is occesionally used in place of the value true;

and similarly so for O and false.-

65. p 63’,, LS next { Of,ff: = ~» next { ol ,#] )=
56. p68, L3 K=l »~ Kemi(+l

B ~>K
67, p68, L5 . Note: '

g stands for the operator which is to be campiled in this line of

coda, It is generated in the expressicn anglyzer.



8.

68. p 68, L 13 until 12 -~y until 13

69, p 68, L 15,£f. should read
Comment. ‘declaration’ handlce lists of identifier possessing the

same declared attributes and, in particular, handles array declarations.

In case of
70. p 68, L 5~ - # column~p# column, for a rectangular #rrayo
7. p68 L 5 insert:

(2) of lgad_imensionp A [m:rg therz is computed
space 2= abs ( n-m+l)
base = ctorage base = 1
storage base 2= storage base + space
and base 1s stored in the address assigned te A. The mapping function

for A[i] is then base + i.

72. p 70, L 14 true ~pirve
T%. p 7L, L3 wr f ~ 1 [¢7]

7. pN, L9, 10
String transfer is the table of Macro identifiers~pString transfer

nyrm
Roun is the number of characters in the Macro.

%. pTl, L1 insert after end:
(this indicates the end of the Macro declaration)

7. p T, L12 delta [33] —~p delta [3]
7% » M, L L shonld rend

) J :2  line number (library table (1) )




79, p 71, L 3= should read

J 1= field (2, library table [J] )
80, p.72, L1 should read

next {(next ( I [,¢J)) := procedure
810 P 729 I.e 3 Note'-’

ecopy serves to copy the list whose starting address is in J

into 1L,¢3
82. p 72, L 7 insert affer ‘there?’:

i8 in the output sequence

83, p 72, L 3 a 0(l) ~~» a=0 (1), respectively
8. p 72, L1~ b 0(1) ~~p U =0 (1), respectively
8. p 73 replaced entirely by: (See page 10.)



10,

The catalogue of actions in the four cases are given in the following

table:
for A 1, ]
Declaration Call
a=o0 a%0, b=0
generate code for —
Pass 1 A : = hase A+ J+ AHL ®3§
*
+ 1: = Column
Pass 2 no action execution of above
a=0,b=1
generate code for:
Pass 1 A : = base A+ J+Al %1 +ﬁ if local identi~
8
or ) o fier
A + 1: = column compute & o in BoAs routine ard -
store 4, in I, and compute
CA® AL R L+ I
Pass 2 no action execution of above
a=1, b=0 (dynamic declaration, not ivside

Pass l-generate code for A: = basec
A+): = coluun

Pass 2 execution of above

procedure)
code for __
A3+ Al *4

execution of above

a=1l, b=}

Pass 1-generate code for AC,&;]: = base

A+1l;€°): = column

Pass 2 execution of above

Agh“m;;! %4 4if

or local identifier
compute ,J; in B.A. .routine '
Store ,33 in I. !

execution of above



86. p Th, L3 Note: »

P Ei] refers to the 12 line of a table containing eitﬁez‘ an
pperator or opersnd of the expression being analyzed. There s
assumed to exist an intermal list of operators whose ord_er_iséecified
the hierarchy of their execution order, e.g.,

T,A *, / s Fp =

meansTdone before * before /, etc.
87. p Th, L 12 delimiter — 1(1

88, p T, L O~ = digit ~p = decimal digit

A TNy 10 (the notation ror base IO)

89, p 75, L 5~ Note:
~
n.j. means code line m. J is an index
9. p7TTL 4L e(l); ~ye(l));
9%. p77L3 1t Note:

Ia each instance the ergument &, of code line (%K) should be

delimited by ' * to indicate the nature of the substitutions being

euployed. e Add

2. 7 L7 met e d ey oA 4]
93. p 77, L 12 ., AP 0

9%, p 77, L. 14 should read
it Pw = Expression terminal Ec] then go to I (expression analyzer)

95. p 77, L 19 ..~ 1. o7
9%. p 78, L1 . ~DI.GT
97. p 78, L 2 (RIx] ) ~> @ [X])

98, p 78, L3 goto (L) » goto |(LGx]));




99.

100,

101.
102,
103,
i04.

105,
106,
107,
108,

109,

110,
111,

p 79;

p 80,
*

p 81,

._Pals

p 81,
p 81,
p 82,
p 83,

p 86,
p 86,
p 8¢,
p 88,

p 90,
p 91,

/2.

L 10 should read

else ‘g0 to |(expression analyzer) end

L 13 MT.BA -~y MT. / (BA)
L1~ " '
L9~ " ‘ ' .
L 1~ # ‘
LR :
L2=- | EX 16 ~XE x 20
L3- ;P [1-53~9(P[i-5])
L2 EX 16 ~5 EX 20
L 10- should read

geto ( Jy) )

L begin : I~tbegin I
L1313 for list ~yfox list
L2- naxt(/[,'g!ﬂﬂnext(o[.él)
L sheculd raed :
is= generated by .comsa
L 11~ ‘f”’“"(’f
259~ (T [H]) ~(IT [H])
L8- shouvld read

Bl 2: if narker (IT (H]) #1(c

L 7= shculd read

then begin H: » H 1; go to Bl2 opd
Lé6~ number > ~ynumber (4] >
L 1rt Nota:

T and IT are used interchangesbly for the identifier table,



p 9, L 13~
P92, L2~
Pp9%, L1
P9%, L7, L8
P 94y L 17

p 96@1 L 1&"‘
p9.2L5
P 9.2, L 72 L9

/3.

norm field ~onorm ( field
is A~%is in A

operand A@oﬁerator

MP [2] ~>MI [2)

seg N (G, ~¥seqw (G,
segw N (Vs ~rseqw( V,

( ~eloo 3 =oLo6

go' te ~xgo Lo

code line (I.J.~xcode lina (I.0%



INTRODUCTION

A single programming language is described. Though it has,
from the programmer?!s point of view, three forms, there is in reality
only one language and only one processor for producing machine code,

In keeping with historical precedence the three forms as mentioned

are:
(i) An algebraic language
{ii) A synbolic machine-like coding language
(1ii) A symbol manipulation lis* proceszing language
(1
The algebraic language is ALGOL with some trivial extengions

The symbolic machine-like languege is like mss(‘2

The symbol-manipulation language is like Thresded Lists(B

Nevertheless the three are described as one language using the same
syntax descriptions and there is ouly one processoro

The nome given to the language is ZOAL,W that of the processor
1s 20/\p,

The report that follows is divided into secticns thats

Define the Lenguege Syntax of 20”°L (Pert I)
Define the Process Syntas: of 20/\P (Part II)
Define the Uss of 26/ (Part IIT)

Naturally, a particuler computer must be used as a model for (ii)
above; znd some of the Process Syntax will be similarly machine dependent,
The maching wed as a model--where so necessary--is the Bendix G 20(50
Effort hes been made to keep such reference to a minimum.

Asaociated with the processor are modes of operation which, of course,

are machine dependent. One such is described in Part IIX. The organizetion



2

A
of 20 P is intended to permit flexible operating schemes, consequently

the design of the processor is described in terms of actions taken at

various phases of the translation process.

The phases are directly rolated to "pssses" through the ode sequences

admitted to and generated by the system. Three passes are involved in the

deseription of the translation process:

i) Reduction frem string represemtation to tree representation ’K’q

ii) Reduction from tree representation to machine code gsequence
representation.

1i1) Reduction of machine code sequence representation 4o output

data represgentaticn.

With respect to sach of the syntactic units of 20/\1 there is
aggoclated & "time" of daclsration and a “time"” of gall. With each of
these thare is a first, an intermediste, and & Lerminasl such

QOAP genarates tablgs of relations hetwsen properties of syntactic

units in the three representatiors, Cperations on these tables do not

sonstitule & yas3 in the sense above. Instead they are imbedded in

transition phases betwesn the pusses.

The fellowing diagram will be useful in describing processing tasks

on the varlous syntactic wmits:

Pass Declaration Call Trensiblon

1

p
3

firset

Hintermediate

terminal

Thus within the descfiptions that follow, the notation Di3 will.

refor to zu intermediate declaration procesging during pass 3,

3# Expressions are hondled-out of deference to storage efficiency--
in & 3 address block form, rather than & pure tres form.




Po-t I.  The Language: 20°'L

The form of the deseription that follows borruws heavily on the
report of ALGOL 600(l Indecd; since the ALGOL 60 language is so much
an integral part of the 20/\L(+, parts of the report are reproduced
almogt in toto in the sequal, No further mention will be made within
those portions of their source.

A word should be sald aboub reprosentation. The characters of the
alphabet are essumed 1o be distinet and individually recognizable. A
unique collaction of characters underlined is assuned to be a unigue
character of the alphabet.

What representation one may choose to use on restricted character
input devices is not the concsrn of this report.

The purpose of the alpgorithmic language, ZOAL is {0 describe
computa.tiqml processes, The basic concepts used for the deseription
of calculating rules are

(i) *atomic™ machiue instructions
(i1) 13st instructions conbaining as constituents numbers,
symbols, variszbles, functions, and relations,
(1ii) the well-knowm arithmetic expression containing as
constituents mmbers, vorisbles, functions 2nd relations,

From such basic units are ccmpounded, by epplying rules of erithmetic
composition, self-contalned unite of the language—explicit formulae-—
called assignment statements.

To show the flow of computationnl procasses, certain control

statemente enxl statemont clauses are added which may describe, €uge,

(+ The definition of ALGOL 60 was--in part--the responsibility of
the seniocr project member,




alternatives, or ilterative repetitions of computing statements. Since
it is necessary for the function of these control statemsnts that one
statemsnt refer to enother, statements may be provided with labels.
Sequences of statements may be combined into compound statements by
insertion of statement brackets.

Statements are supperted by declarstions which are not themselves
computing instructions, but inform 2(/\ P of the existence and of certain
properties of objects appearing in statements, cuch as the class of
murbers taken on as values by a variable, the dimension of an array of
mumbers, or sven the set of rules defining a function. Each declaration
is atiached to armd valid for one compound statement, A compound statement
which includes declerations ls called & blocke

A program is a self'-contaivesd compound statement, i.e., & compound
statement which is not contained within another compounxl statement and
which malkes 10 use of other compound statements not contained within it,

(%
In the sequel the syntax and sementlics of the language will be given,

(3 Whenever the precision of arithmetic is stated as being in
general not spocified, or the cutccme of a certain process is
said to be undefinsd, this is to b interpreted in the sense
that a program only fully defines a computational process if
the accompanying information specifies the precision assunsd,
the kind of arithmatic sssumed, and the course of action to be
taken in all such cases as may occur during the exacution of
the computation.




l,1. Formalism for Syntactic Description

(6
The syntax will be described with the aid of metalinguistic formulae.

Their interpretation is best explained by an sxample
<ab> 2= (|| <an> |<av> <a>

Sequences of characters enclosed in the brackets < > ropresent metal-
inguistic variables whose valuez are saquences of symbols., The marks 3=
and | (the lntter with the meaning of _g{) are metalinguistic connectives.
Any mark in a formulsa, which is not & variable or a comnective, denotes
itself (or the cless of marks which are similar to it). Juxtapdsition of
parks and/or veriables In a formula signifies juxtaposition of the
gsequences dencteds Thus the formula above gives a recursive rule for the
formation of values of the variaple <ab>. It indicates that <ab> may
have the value (or [ or that given some legitimate value of <ab>,
another may be formed by following it with the character (or by following
it with some value of the variahle <d>, If the values of <@> are the
decimal digits, some values of <ub> ares

£0C(2(37%(

(12345(

{{(

[86
In order to facllitate the study; the symbels used for distingulshing
the metalinguistic varinbles (i.e., the sequences of ¢ aracters appearing
within the brackets <> as ab 4n “he above example) have been chosen
to be words describing approximately the nature of the corresponding
variable, UWhere words which heve appsared in this manner are vsed
elsewhere in the text they will refer to the corresponding synisctic
definition. In addition some formulae have been glven in more than one

places, Definitions <empltys siw
(1,8., the null string of symbols).




2. Basic Symbols, Identifiers, Numbers, and Strings.
Basic Conceptss

The reference langusge is bullt up from the following basic symbols:
<basic symbol> 3= <letter> l<d1git> lqagical valug> | delimiter>
<continuaiion marld>

2o1e Letters

<laetter> 13= a{b IL id !flglh iijlk ll!m%nl‘olp q}r!sitlulv!w,xly'z,

Fhkhkkhmwbhhhbhhhhkhk

Abkbh
This alphabet may arbitr&rily be restricted, or extended with any other
distinretive character (i.e., character not coinciding with any digit,
logicel value or delimiter),

Ietters do not heve individual meaning. They are used for forming
identifiers and strings (ecf. sections 2.4. Identifiers, 2.6. Strings).

2,2.1, Digits

k]slel7
dectmal digit> :1= qmnudgn>lﬂ9

<octal digit> s3= Olll2i3

Decimal digits are used for forming numbers, ldentifiers, and strings.

202020 Logic&'l Yalves
<logieal value> 3¢» true lféﬂ.sg
The logical wvalues have & fixed obvicus meaning.



2030 Delimiters

<delimiter> 11« <operator> |<separators> | wracket> l <declara.tor>l
<specificator>

<operator> ::» <arithmetic operator> ‘ <relational operator>,
<logical operator:> l<sequentia.l operator> 'Qist operator>

K

<relational operator> ::= < l§ lﬁs | ;' > i # l

<arithmetic operator> ::= + l - !x !/

<logical operator> 3::= %, - l\/,/\"‘r, ¢
<ist operator> ::= # | ¢ ' V4 I\'g

<instruction operator bound> ::= l | ~¥

<sequential operator’> ::= go tol if | 'bhen‘! else l_i_‘_o_g_ l do

<sgparator> 1= , | . I 10 l : l 3 l .~| __%_,step l until , while I comment,

<bracket> 1 ()| ]2 | |pegin | ena

<declarator> :3= own lBoolean lil.ogica:!. ljnteger ioctal{ reall a.rragr‘

Prtvbited

switch lprocedure I irdex lmacro lparameter ‘equivalent ‘ library l

sonstant. | 1Aat,
<specificator> ::= string ;1&%‘ value

Delimiters have a fixed meaning which for the most part ia

obvious or else will be given at the appropriate place in the sequel.
Typographical features such as blank epace or change to a new line have
no significance in the reference language. They may, however, bs used
freely for faclilitating reading.
|

<continuation mark> ::% V¥

The continvation mark is used in the case of symbolic machine
code as a8 punched-card oriented convention specifying that the instruetion
punched on the card requires (2t least) one more card to complete jis

description.



For the purpose of inciuding text among the symbols of a program
the following "comment" conventions hold:

The sequence of basic symbols: is equivelent with
; comment <any sequence not containing ;> ;
begin comment <any sequencs not containing ;>3 begin
end <any sequence not containing end or ; or glae) epd

By equivalence is here meant that any of the thres symbols shown in
the right~haxd colunn may, in any occurrence outside of strings, te
replaced by any sequence of symbols of the structure shown in the sars
line of the left~hand coluimn without any effect on the action of the

programe
2.5, Identifiers

2 ol{. olo S}'nm
<agits|

<ddentifier®> :te <letter’ |<identifier> |<ddentifier>
<apecial register identifier>
2,5,.2, Examples
q
Soup
17
a34kTVNs
MAR(ILYN

2els3+ Semantics

Jdentifiers have nc inhierent meaning, bul serve for the identification
of simple variables, arrays, labels, switches, and proceduress They may
be chosen freely (cf., however, section 3.2.4. Standard Functions).

However, the use of symbolic machine code is more easily mixed with

the algebraic end list language if certain machine reglsters are



recognized by identifiers fixed by convention. Thus, e.g.,
* <specinl register identifier> ti= ACC|MQjoO4 IR
The above 13 intended as an example and is clearly machine dependent.

The same identifier cannot be used to denote two different quantities
except when these quantities have disjoint scopes as defined by the declara-~
tions of the program (cf. section 2.7. Quantities, Kinds and Scopes, and

section 5. Declarations).
2.5, Numbers

25,1, Syntax

<digit> i« <decimal digit>

<unsigred integer> 3:= <digit>,<unsigned irteger> <diglit>

+ <unsgigned integer> I- <unsigned integer>

<integer> i1¢= <unsaigned integer>

<decimal fraction> i@ <unsigned integer>

<expounent part> := 10<integer>‘

<decimal number> 3= <unsigned integer> l <decimsl fractiorn> l<unsigned
integer><decimel fraction>

<unsigred mmber> $:» <decimal mmber’> id(ﬁ\xpﬁmnﬁ paris ;
<decimal number><axponent pert>

<number> 3o <unsigned number> l + <unsigned number> ‘ - <unsigned number:

<unsigned octal integer> tiw <octal digit?)l <unsigned octal integer’> <octal
digit>
<octal imteger>:is (8) <unsigned octal integer> |4'(8)<unsigmd octal integer>

~<unsigned octal integer>

S ————




10

2:.5.20. Examples
0 ~200,084 ~e083,5-02 (8) 1234
7 +07443108 ~107 (8) 77T1?
05384 90341*10 1074
+0.7300 2107 +10*5

20:5.3s Semantics
Decimal numbers have their convenbional meaning. The exponent part

is a scale factor expressed &s an intezyal power of 10, Cetel numbers
are used only with machine cssenbly cocfe.

2.5440 Types
Integers are of type integsre All other numbers are of type real (ofs
section 5,1, Type Declaraiions).

2 6 @ Strings

2:6,1, Syntax
<proper string> = <any sequence of basic symbols not containing

tor?> |<empty>
<open string> 3= <proper string> l’<0p5:n string>t

<open string> <open string>
<gtring> 3= '<open string>!
2:6,2o Examples
| 15k, o=t L[V A =/302m
?,. This % is X a P 'string"

2,603, Semantics

In order to en8ble the language to handle arbitrary sequences of
basic symbols the string quotes ‘and? are introduced. The symbol % denvtes

2 spacs. It has no significance cutside strings.

Strings are used as actual parameters of rrocedures (cfo sections 3.2+ ,

Function Designators and 4.7. Procedure Statements).




2.7, Quantities, Kinds and Scopes

The following kinds of cuantities are distinguished: simple variables,
arrays, lists, labels, switches, macros, and procedures.

The scope of a quantity is thz set of statements in which the declara-~
tion for the identifier associated with that quantity is valid, or, for
labels, the set of statements which may have the statement in which the label

occurs 28 their successors

2.8, Values and Types

A value is an ordered set of numbars (speclal case: a single number),
an ordered set of logical values (specisl case: @& single logical velue),
an ordered set of strings (spscial cese: & single string), or a label.

Certain of the syntactic units are said to possess values. These
velues will in general change during the exscution of the program. The
valuss of expressions aml their constituents are defined in section 3. The
valus of an array identifler i3 the ordered set of values of the correspond-
ing array of subscripted variables (cf. ssctlon 3.lebelo)e

The value of & list identifier is the ordered seot of values of the
corresponding list. These values are ordered by the element sequencing
rule for 1ists (3.8..0)

The various “typss" (inteser, real, Boolesn) basicelly denote
properties of vBlues, The types asscciated with syntactic units refer to
the valves ¢f these units.

2,9 Threaded Lists

Threaded lists (ilists) hove been reported on elsewhere(7c The
following points are, however, basic to the material of the report. An
information site is a place in the machine that can be occupied by 1)

a symbol, 4i) a Tlist, iii) an addiess sprcifying the site of a symbol.
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Initially a Tlist named NAME occupies two sites denoted by: NAME:
(,)s One information site, demoted by , ) is available in each empty
Tlist of the form (,).

New blank sites may be added by an inssrt operation, Thus:

G) Tma® ) Tmee— (s )e

In & blank site, an empty Tlist may be inserted. Thus:

(’ s ) list (s (a )9 do

) T

In order to access information in a Tlist each list may be sequenced
at any time in one of three w&yscez word, element; and list, Furthermore,
if X is the name of a particular Tlist, X¢ specifies its site currently
undsr scan. X#* specifies the "next" eite to that currently under scan,
and makes $t the current cne. n(k,X¢) specifies the k*! next site to that
currently urder scan but does not change the significance of X¢. h{(X¢)
specifies ths site of the innermost "(" of the pair " (" and ") " which
enclose X¢. Similarly the k' head of X¢ by u(k,X¢)» B(h(heeolUXE))ees)o
The operators h amd u are themselves independent of t.h:c sequencing
mode employed.

Word sequencing is a lefi-right ssquencing with exactly cne stop at
each site, List sequencing it o left-right sequencing with stops only at
sites which are on the same level, ZElement sequencing is a left-right
sequencing with stope only &t sites where symbols or indirect referents
may occurs An exemple will clarifys

Tasts  (o(s )s s(sls(s 2 Mo s )s )
word sequences 12 345678 91011
list sequence: 1 23 4
elemont sequences 12 34 56 7



Two 11813 may be combined in several ways to form new lists.
Copy (x,y) copies the list x into the list site y, Thus:

(oos) amdt (5(5 )y 5 )
X y

gives for copy (X,y): (5(y(cce))s 2 )o Jdoin (z,x,y) forms 2z: (x,¥)e
Apprdr (x,y) forms, using the above example, (,(, )5 5 »(0se))e

Th® .. operation substitutes symbols and control characters into
sites from other sites. It is a special copy working on the micro scale
of a site.

3. Expressions

In the langunge the primsry constituents of the programs deseribing
algorithmic processes are arithmetic, Booclean, and designational, expressions.
Constituents of these axprossions, except for certain delimitere, are
logical valuss, numbers, variables, funciion designators, and elementary
arithmetic, relationsl, logical, and sequentisl, operators. Sinece the
gyntactic definition of both variables and function designators contains
expressions, the definition of expressions, and their constituente, is
necessarily recursive.
<expreggicn> $3x <arlthmetic expressicn> <Boolean expression> <logical

exprespion> <desigmational expressior> <address expressior>

3.l Variables

301l.le Syntax

<veriable identifier> ssw <identifier>

<simple variable> ::» <varigble identifier>

<subseript expression> ::= <arithmetic expression>
<subscript lisi> ::= <subscript expression> | gubscript list>,

<subscript expression>
<array identifier> s« <identifier>




<subscripted variable> :$:= <array identifier> [<suwbseript list>]

<list variable> s:» <Jdst identifier> [<1ist subscript list>]

<list identifier> 3= <ddentifier>

<list subseript list> t2= <fore list subscript expression>, <aft list
subscript expression>

<variable> si= <simple variable> | <subscripted variable>’ <list variable>

3 ole2e Eh:ample’a

epsilon R[ ,¢]
detA Xp ¢, #]
al?

QL7,2]

x[ain(n x pi/2), Q[3, n, 4]]

3:103c Semantics

A variable is a desigmation given to 2 single value., This value may
be wsed in expressions for forming other values and may be changed at will
by mears of assignment statements (section L.2.). The type of the value
of & particular variable is defined in the declaration for the variable
itself (cf. section 5.1. Typs Declarations) or for the corresponding array
identifier (ef. section 5.2. Array Declarations).

"30lelie Subscriptes

3olelola Subscripted variables designate values which are components of
multidimensional arrays (cf. section 5.2. Array Declarations). Each
aritimotic expression of the swbscript 1ist cccupies one subseript position
of the subscripted variasble; and ls called a subscript. The complete list
of subscripts is enclosed in the subscript brackets [ ]. The array com-
ponent referred to by a subscripted variable 1s specified by the actual
nunerical value of its sukscripts (cf. section 3.3. Arithretic Expressions)o
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3.1lohs2a Each subsceript position acts like a variable of type jipteger and
the evaluation cf the subscript is wlerstood to be equivalent to an assign-
ment to this fictitious variable (Cfe« section 4.2:4). The value of the
subscripted variable is defined only if the value of the subscript expres-
sion is within the subscript bounds of the array (cf. section 5.2, Array

Declarations).
301050 Iist Irdices

3sle5.1, List variables designate components of lists. Fach list expres-

sion of the subscript list occupies one subscrlipt position of the subscripted

list varieble, ard is called a8 list subscript. The complete list of
subscripts is enclosed in the subscript brackets [ Jo The list component
referred to by a subscripted varisble is spseified by the action of the
list seguencing mode cwrrently operative over the list named. The value of
the subscript is defined only if the sequencing action does not exhaust the
iist elements. Should extwustion occur before the list component is

encounterad ;control transfer within the program will oceure
362, Function Designators

3.2l Syntax

<procedure identifier> :i= <ddentifier>

<actual parameter> $:= <gtring> l@xmessiorb <array identifier>
<switeh identifier> |<procedure identifier>

Qotter string> t= <lotter> |Jetter string> <letter>

<paremeter delimiter> si= ]) <letter string> & (

<actual parameter list> e <actwal paramei;ezb{
<zctun) parameter list> <parameter delimiter>

<actual mrameter>




16
<actual parameter part> ::= <empty> | (<actual parameter list>)
<function designator> ::= <procedure identifier>

<actual parameter part>

3:2.2. Ixamples
sin{a-b)
J(v+s,n)
R
S(s~5) Temperature:(T) Pressure:(F)

Compile( ¢:=? )Stack: (Q)

302:3. Semantics

Funetion designators define sequencing rules, single numerical or
logical valuwes, which result through the application of given sels of rules
defined by a procedure declaration{cf. section 5.4 Procedure Declarations)
to fixed sets of actual perameters. The rules governing speciflcaticn cof
actual paraneters are glven in section L.7. Procedure Statements. Not

every nrocedure declaration defines the velue of a functlon designator.

3¢2.hs Stardard functions
3420bole Standard Arithmetic Functions

Certain identifiers should be reserved for the standard functions
of analysis, which will be exprecsed 28 procedures. It is recoumended
thet this reserved list should contain:
aba(E) for the modulus (abeolute value) of the vaine of the expression B
sign(E) for the sign of the value of E(+1 for E>0,0 for =0, -1 for B<D }
sqri(E) for the square root of the value of E
a3in(E) for the sine of the value of E
cos(E)  for the cosine of the valwe of E

arctan(E) for the principal value of the arctangent of the value of E
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in(E) for the natural logarithm of the valus of E

exp(E)  for the exponential function of the value of E (e%)e

These funciions are all understood to operate indifferently on arguments
both of type real and integer. They will all yield values of type real,
except for sign(E) which will have values of type integer. In a particular
representation these functions may be available without explicit declara-
tions (cf. section 5. Declarations).

302402, Standard Iist Procedures

naxt(v) for the extraction of the next list component from v without
advanelng the sequencs marker

1ist(v) for the insertion of an empty list into the site v
inart(k,v) for the insertion «f k ompty sites immediately following v
def(w,v) for the dynamic definition of a list w as v

cbpy(v,w) for the creation of a llst w which is, except for linking
sddresses, identical to the list ve

seq(e,v,w) for the sequencing through list v in mode e with exit to w
on completlon

These functions operate on lists according to the formation and
sequencing rules regerding lists (cf. section 3.8)

3¢2.50 Transfer Functions

It is wderstood that transfer functions Letween any pair of quantities
and expressions may be defined, Among the standard functions it is recom-
nepded that thers be one, ramely
entier(E)
which "transfers" an expression of real type to one of ipteser type, and
essigns to it the value which is the largest integer riot greater than the

value of E

3.3; Arithmetic Expressions




3.3.1s Syntax.

<adding operator> g3« + l-

<gultiplying operator> ::= x l/ l ]

<primary> s:= <unsigned number> |<variable>|
<Cunction designatord> l (<arithmetic expression>)

<factor> :te <primry> ‘<fa.ctor> T<primary>

<term> ::= <factor> ‘<term> <multiplying operator> <factor>

<gimple arithmetic expression> ::= <term>l
<adding operator> <tern> ' <simple aritimetic expression>
<adding operator> <tern>

<if clause> ::« if <Boolean expression>then

<arithmetic expression> ¢ <simple arithmetic expression>
<if clause> <gimple arithmetic expression>glae
<arithmetic expression>

30302, Examples

Primaries
7:39%10~8
swn
w[1+2,8]
cos (y+2zx3)
(a-3/y+vu T8)
2 ¥, ¢

Factors:
omega
sun Teoa(y+z x 3)
7039108 TW1+2,81 T(a-3/5+vu T8)
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Terms:
U
omega X sum Tcoe(y*z x3)/7e3%0-8 Ml 1+2,8] 0
(a-3/y+vu-8)
Simple arithmetic expression:
U-Yuromega X sm?coa (y+z x 3)/7.39&10-8Tw[1~>2,8] T
(a-3/y+vu?8)
Arithmetic expressions:
WX u—Q(S+Cu)/72
if 0 then S+3 x Q/A else 2 x S+3 x g
if a<0 then WV elge if a x b>17 then U/V else if
Iy then V/U else O
a x sin(omega x t)
0057912 x alN x (N-1)/2, 0]
(A x arctan(y) + Z) 1\(7*‘(2)‘
if q then n-1 glge n
if a<D then A/B else if b=0 then B/A olsa(s x B[/, #*])

3+303. Semantics

An arithmetic expression is a rule for computing a mmerical valuzo
In case of simple arithmetic expressions this value is obtained by exaecuting
the indicated arithmetic operations on the actuzal mumerical values of the
prizmaries of the expression, as explained in detail in section 3.3.4 below.
The actual mumerical value of & primary is obvious in the case of mumbers.
For veriables it is the current value (assigned last in the dynamic amzse),
and for function desigmators it is the value arising from the computing .
rules defining the procedure (cfo section 5.ks Pm cedure Daclarations)
when applied to the current values of the procedure parameters given in the
expression. Finally, il'or arithmetic expressions enclosed in parentheses
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the value must through a recursive amalysis be expreased in terms of the
values of primaries of the other three kinds,

In the more general arithmetic expressions, which include if clauses,
one out of several simple arithmetic expressions is selected on the basis
of the actual values of the Boolean expressions (cf. ssction 3.4. Boolean
Expressions). This selection is mede as follows: The Boolean expressions
of the if clauses ars evaluated one by ons in sequernice from left to right
until ons having the value rue is found. The valus of the arithmetis
expression is then the value of the first arithmetic expreasion following
this Boolean {the largest arithmstic expression found in this position is
understood). The constructions
else <simple arithmetic expression>

is eguivalent to the construction:
else if true thep <simple arithmetic expression>

303+4o Operators and Types

Apart from the Boolean expressicns of if clauses, the constituents
of simple arithmetic expreasiors must be of types real or ipteger (cf.
section 5.,1. Type Declarations).

List variables ozcurring in simple arithmetic expreseions must of
course, refer to that part of their information content which is of type
real or integer. The meaning of the basic operators and the typres of the
expressions to which they lead are given by the following rules:
303oliel. The operators ¢, -, and x have the conventional meaning {additicz.
subtraction, and multiplication). The type of the expression will bo
integer if both of the operands ars of integer type, otherwlise resl.
3e30402. The operations <term>/<factor> and <term> 3 <factor> both denots
division, to be understood as a maltiplication of the term by the reciprocel
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of the factor with due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/d x 7/(p~q) x v/s

(((a x (™)) x 7) x ((p)™)) x v) x (s71)
The operator / is defined for all four combinations of types regl and
and jpnteger and will yield results of real type in any case. The operator <
is defined only for two operands both of type integer and will yield a
result of type ipteger defined as follows:
a $b = sign (a/b) x entier(abs(a/b))
(ef, sections 3.2.4 and 3.2.5).
303.4.3s The operation <factor> T<pzv:l.mnry> denotes exponentiation,
where the factor is the base and the primary is the exponent, Thus, far
example,
2t means  (2R)k
vhile
2 M(efu) meams 2(nm)
Writing i for a mummber of integer type, r for a number of resl type,
and a for a number of either. jpteger or real type, the result is given
by the following rules:
afi  If £50, a x & Xseex & (4 times), of the same type as &.
If i=0, if a#0, 1, of the same type as a.
if a~0, undefined,
If 1<0, if a#0, 1/(a x & X...x a) {the denominator has
i factors), of type real.
il a=0, undefined,



afr If 20, exp(r x In(a)), of type real.
If a=0, if r>0, 0. O, of type real.
it r?, undefined,
If a<0, always undefined.

343¢5, Precedence of operators
The sequence of operations within ons expression is generally n-cm
laft to right, with the following additiinal rules:

3.305.1c According to the syntax given in section 3.3.1 the following
rules of precedence hold:

tirst 4}
second: x/7
third: 4 -

3.30.5:2. The expression betwee: a left parenthesis and the matiching right
parenthesis is evalusted by itself and this value is used in subseqiient
calculations. Consequently the desired order of execution of operations
iithin an expression can always ba arranged by appropriate positioning

of parentheses.

3.3.6, Arithmetics of real quantities
Numbers izl variables of type real must be interpreted in the sense

of mmerical analysis, i.e., as entities defined inherexntly with only a

finite accuracy. Similarly, the possibility of the occurrence of & finite
deviation from the mathematically defined result in any arithmetic expression

in explicitly understood. No exact arithmetic will be specified, however,
and it is indeed understood that different hardware representations mey
evaluate arithmetic expressions differently. The ontrol of the possibls

consequences of such differences must be carried out by the methods of
numerical analysis. This comtrol must be considered a part of the process

to be described, and will therefore be expressed in terms of the language
it!.lfn
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3.4 Boolean Expressions
3ebel. Syntax .
<relatiomal operator> ii= < Ig l- l b l>| #
<prelation> :it= <arithmetic expression> <relational operator>
<arithmetic expression> ldogical axpression> <relational operator>
<logical expression>
<Boolean primary> s1= <logleal value> | <rarisble> |
<function designator> l<rohtion> |(<Boolean sxpression>)
<Boolean secordary> t:= <Boolean pr:imry>l -1<Boolean primary>
<Boolean factor> t:= <Boolean aeconduy>| ‘
<Boolsan factor>/\ <Boolean secondary>
<Boolean term> 1= <Boolean factar> | <Boolean term>
V/ <Boolean factor>
<implication> se= <Boolean term | <implication) )<Boolean term>
<simple Boolsan) :s= <implication?“vl
<simple Boolesn>e=<implication>
<Boolean expression> 1:» <simple Boolean> |
<if clause> <simple Boolean> glse <Boolean expression>

3ele2. Examplas
XxXe =2
Y>VWVvz<g
a2b>=-5As-d>qR
PAQVXEY
gz aAbAmeyydyeD !t
ifk<lthens>welsphse

nnuaﬂmbﬂmcmdmfm_s%

SR




3ehe3. Semantics

A Boolean expression is & rule for computing a logical value.
The principles of evaluation are entirely amalogous to those given for
arithmetic expressions in section 3.3.3.
3e4oh, Types

Variables and function designatars entered as Boolean primaries
must be declared Boolean (cf. section 5.1. Type Declarations and sectioms
Solielso Values of Function Designators).

3e405. The Operators
Relations tales on the value true whenever the corresponding relation
is satisfied for the expressions involved, otherwise false.
The meaning of the logical operators -3, (not), A (anmd), \/ (or),
) (implies), and = (equivalent), is given by the following function
table. '
bl falge false irue irue
b2 false trwe false rue

=1 bl true irye false falpe
bIAb2  false false false irue
blyvb2 false irve irus ipve
PO true frue  false fxue
bl==b2 irye false false itrwe
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3.5 logical Expressions

305.1e Syntax
<simple logical operator> is= \/ ,/\ '-1 l$
Qlogical primary> 11= <octal integer> | <integer> | <variable>|
<function designator> |<Boolean exproasiorb' (<logical expression>)

<shift measure> $i= <arithmetic expression>

<logieal secondary> 1= <logleal primary> |—j<logieal primary>

<loglical factor> gi= <logical secondary> l<l.ogical factor>l$ <shift musuro>!

Qogleal term> 3= <logleal factor> | <logleal tern>/\ <logical factor>

<umjor> 31w <logieal term> |<usjor> \/<logical tern>

<ogical expression> 3= <major> |<1r clause> <mjor> plse <logical

' axpression>
3.5.2. Examples
IVY
X $(Ixd-4)
(XAY)$ K
(i X$2=Y then Z else k) $3
3.5.3. Semantics
A logical expression ie a ruls for computing the value of a fixed

length string of binary digite, The principles of evaluation are entirely
analogous to those given for arithmetic expressions in section 3.343s

3e5okho Types

Variables and function designators entered as logical primaries
must be declared lozical (of. section 5.1, Type Declarations and sections
Sulobs Values of Function Designators).

305:5. The Oparators
The operator $ refers to & (non-cyclic) shift of the bimary pattern.
Thus inf1 $ 02, the logical variable f1 is shifted l[z! (mod &~ ) places

e e e *
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left (right) if A2 bas a positive (negative) value. ¢ is a function of
the register sive of a computer and will, of course, vary among computers.
All other operators are as described in sections 3.4.5. and 343440

3.5.60 Precedence of operators
The sequence of operations within one expression is gensrally from
left to right, with the following additional rules:

345.601. According to the symtax given in section 3401, 305.1, the
following rules oi' precedence holds:

first: arithmetic expressions according to section 3.3.5.

second: <<= 2> #

thirds =

fourth: $

fifth: N

sixth:

seventh: )

eighth: ==

30hobe2, The use of parentheses will be interpreted in the sense given
in section 30305029
3.6,  Designational Expressions

3.6.1, Syntax
<label> 5= <identifier> '<umig,ned integer>
<switch identifier> tt= <idemtifier>
<switch desigmator> st= <awiteh identifier> [<subscript expression>)
<simple desijmstional expresior> tsw <label> | <switch deeignator> |

(<desigaational «xpression>)
continued —
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<designational expression> stw <simple designational emaasio»'
A clause> <simple designatiomal axpression> glge
<designationsl expression>

3.6.2 Examplss
17
P’
Choose[n-1]
Town[if y<O then N glse N¢l
47 Ab<c them 17 else qfif wD tivn 2 elss n)

30603, Semantics

A designational expression is a rule for obtaining a label of a state-~
ment (cf. section /. Statemem.s). Again the principle uf the evaluation
is entiraly amslogous to that of aritimetic expressions (icetion 3.3.3).
In the general caso the Boolean expressions of the If clausce will select
a simple designational expressions If this is a label the deuired result
is already found. A gwitch designator refers to the corresyond.ug gwitch
declaration (cf. section 5.3, Switch Declarations) and by the actwyl
nunbrical value of its subscript expression selects one of the desigational
expressiomns listed in the gwitch declaration by counting these from lei
to right. Since thi designational expression thus selected may again be
a switch designator this evaluation is obviously s recursive process.

3.6.40 The subscrist expression

The evaluation of the subscript expression is analosous to that of
subscripted variablas (cf. section 3.le4e2). The value of a switch
designator is definud only if the subscript expression rssumes one of the
positive values 1, 2, 3, ecop R, Where n is the number of entriss in
the switch list.



3,7 Address expressions
307.1 Syntax
<address expression> i:= |<indirect> l-)<direct.>
<indirect> 3= <indirect address expression> B (<indirect address
expresiyion> <sign> <indirect address expression>) l (<rdirect>)
<direct> 11« <unsigned address integer> | <indirect>
<indirect address expression> ::= <pimple address expreea:lon'>|
(<indirect address expression>)
<gimple adiress expression> 23w <elementary address> I <alementary address>
<sign> <elementary addresa> | <alsmentary address>
<sign> <unsigned address integer>
<elementary address> = <identifier>
<unsigned address integer> ti= <an unsigned integer < 32,757
<sign> tt= ¢ ! -

3,720 Examples

11.26
lxw(s);zs

~> ¢ - kb6 ¢ DT4

—$:1 + B}
I:z«r (E9)

—+( X6+ (z1I1))
| azema )o + (M0 )) « (TAV))

3073 Semantics

Address oxprersions are used to specify the value of operands of the
symbolic machine-1: ke code. Their syntax is defined tc make maxiral use
of the operand genreting facilities of a particular ccmputer. In particular,

in address express.ons, the characters "( "and n)n prackeiing an identifier
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refer to the contents of the storege location which will correspond to

that identifier, Nested parentheses provide levels of indirect addressing.
indicates that identifiers not enclosed in parentheses have individually

implied parentheses about them, - -3 indicates that the valus of the address

expression izk}:pdoii:xgt o The value of the adiress axpre¢ssion will in general

be defined modulo (f ) where § will depend on the ad ressible starage

capacity of the caputer,

30.7+4o Precedence of operators

The sequence of operations within an address expr¢ssion is generally
from left to right. Insofar as sequencing of operatiors is concerned, the
use of parentheses will be interpreted in the sense given in section 3.3.5.2.

3.8 List Subscript expressions

3.8.1, Syntax
<address chaii> 33= \(l Ni\{ms chuin>| ¥ <aciress cha1n>|
<function designat > l<unpty>
<forelist subicript expression> 1:= p |<address cfain> Ip <address chain>
<aftlist sequnce chain head> s1= i* I <function ¢ ssignator> !
<aftlist sequence chain> 13« <aftlist sequence ct iin head> letmt
Jequence chain head> <aftlist se¢ juunce chain>
<aftlist subscript expression> 31« ¢ |<uftlist sec snce chain>

3,802, Examples: {as subsc ipts)
ELKYY ¢ )
EL pyls v ]
tLp HVIW #], )N 4 ]

U ————




3.8.3, Semantics

The list subscript expressions are used to select list componentse.
p isolates the list component prefix, ¥ (Y) the left (right) portion of
the list component. ¢ refers to the current position of the sequence
counter on the list in question; 4 refers to the next as defined by the
sequencing rule invoked on the lists & glters the seqience counter before
extraction of the ilst components

30,8040 Precedence of operators
Vand ¥ sre essociative to the right, l.e.,

lz)‘llx means ;/of )/of %of Xo

4, Statements

The units of operation within the language are called state-
ments. They will rormally be execubed consecutively as written. However,
this sequence of orsrations may be broken by control stutementn, 1.e., go 1o
statements, which ¢sfine their successor explicitlys shortened by conditional
statements, which nay cause certain siatements to be skipped; and expanded
by for statements :hich caL-e certain statenents to be repeated.

Tn order to me ke it possidle to define & specific dynamic succession,
statements may be yrovided with labels.

Since sequences of stataments may be grouped togetier into compound
statements and blocks the definition of statoment must necsssarily be
recursivea, ‘.‘1” since deslarations, describsd in sectisn 5, enter fundament-
ally into the syntectic structure, the syntactic definiiion of statemsnts
must suppose dsocla:ations to be already defined.
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4o1, Compound Statements and Blocks

helolo Syntax
<unlabelled besic statement> :3= <assignment atatamznbl
<go to strtement> | <dummy atat@ub l<m'ocedm.~e statmt>l<code line>
<basic statemxnt> 1:= <unlsbelled basic statement> |<labe]>:
. <basic ststement>
<unconditional statement> ;= <basic statement> I(?or at&tumnt.>l
<campound atatement> |<blockss
<statement> si= <unconditional statement> '
<conditional statement>
<compound tail> 11~ <statement> gpd |<statement> ;
<campourd tail>
<block head> ::= begin <declaration> id:lock head> ;
<declaratim>
<unlaballed conpound> $:= begin <compourd tail>
<imlabelled blscic> 33« <block head> ; <compound tail>
<compourd statxmwnt> 3= <unlabeled compound>
<label>t<e mpound statement>
<bleck> tt= <mlabelled block> |<label>:<block>
This syntax may be :llustrated as follows: Denoting artitrary statements,
declaraticns, ard libeols, by the letters S, D, and L, r:epactively, the
basic syntactic uni:s talm the forms:
Compound statement: ,
L Lt ooe D8I S 5 S 3 eee S 3 S amd
Block:
Lt Lt voo oy D 3 D 3 seD 3 S 3 8 3 secd 3 S end
It should be kept i1 ndnd that each of the statements S may sgain be a
complste compound s.atememt or block.
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b4el:2, Examples
Basic statementss
& t= piq
g0 Yo Naples
START: CONTINUE: Wi~ 7,993
r: bt ClA x+(3)~1'

Compourd statcaent:
bogin x == 0 ; fory 1= 1giepl unbdl n do x t= xoAly] H
AL x>q then go to STOP elss if x>w-2 thsn go 10 S 3
Aw: Sts Wi~ x+bob epd
Blocks
Q: beein integer 4, k 3 real v
fop i s« 1 ptép lupti)l m do
fop k ¢= i+ 1 step 1 uptdl mdo
bogin w 1= Ali,k] 3
A(i,k] = Alk,L] ;
Alk,i) := w gpd for 1 ad k
epd block Q

4o1.3. Semanticy
Every block :utomatically introduces a new level of nomenclature.
This 1is realiz&l .5 follows: Any identifier ocourring vithin the block
may through a sui .abie declaration (c.f. sestion 5, Declarations) be
specified to be 1 cal to the block in question. This me.ans {a) that
the entity repres nted by this identifier iiside the bla:k has no
existence outside it, and {b) that any entiiy representesd by this identifier
outside the block is completely inaccessibls inside the block.
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Identifiers (except those representing labels) occurring within a
block amd not being declared to this block will be nonlocal to it, i.e.,
will represent the same entity inside the block and in the level immedia-
tely outside it. The exception to this rule is presentei by labels, which
are local to the lock in whieh they oceur.

Since a statament of & block may again itself be a >lock the concspts
local ard nonloca. i’.o a block must be understood recursirely. Thus an
identifier, which is nonlocal to a block A, may or may not be nonlocal to
the block B in wh .ch A is one statement.

Lo2s, Assignment Statements

402:1s Syntax

<left part> ::= <variable> t=

<left part list> ::= <left part> [<left part list> <left part>

<assigment statwient> 33s <left part list> <arithmetic expression> |
| <left part 1l'st> <Boolean expression>

ho2:2. Examples
s t=pl0) e»neenecles
nwnel
A=BS-v~-qx S
6 v, k02] = 3 - arctan(s x zeta)
Ve QO>YANZ

402:3. Semantics

Assignment & abements serve for assigning the value of an expression
to one or several vuriables. The process will in the geiieral case be
understood to talx place in three steps as follows:
402.3.10 Any sub. cript expressions occurring in the le:'t part variables
are evaluated in { equence from lsft to right,

e+ e e e e ettt e T
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L4o20302. The expression of the statement is evaluated.
he2+363, The value of the expresaion is assigned to all the left part
variables, with any subscript expreassions having values as evaluated in
step 4e2.3.1,
bhoe2olio Types

All variablis of & left part list mus’ be of the same declared type.
If the variables are Boolesan, the expression must likswise ts Boolean, If
the varisbles ar« of type real or integer, the expression must be arithmetic.
If the type of tle aritimetic expression d:iffers from that of the variables,
appropriate transfer functions are understcod to be automatically invoked.
For transfer frou: real to ipteger type, the transfer function is understood
to yield & resuli equivalent to

¢ntier(E ¢ 0.5)

where E is the vilue of the expression.

l&oao _Gg E_ & atements

ho30lo Syntax
<80 to stat ment> :3= go to <designational expression>:

fo302s Examples
2 ko 8
0 o exit [n#l’
9 1o Towr[if y<O then N else Nell
9 t0 &L Ab< c then 17 elsa qfif w<U {fien 2 glae n)

lhe303s Semantic .

A go $o sts .ement interrupis the normal sequence of operations,
defined by the ¥ *ite~up of stataments, by defining its succossor explicitly
by the value of : designaiional expressior. Thus tho next astatement to
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be executed will be the one having this value as its label.

4o3eho Restriction
Since label: are inherently local, no go 1o statement can lead from
outside into a b ocke

Le3o5. GO 10 an urdefined switch designator
A go to sty ament is equivalent to a dumy statement if the designa-
tional expressio: is a switch designator wiose value is undefined.

bobho Dummy Stat. nents

hol;olo Syntlx
<dumny statcment> $3= <empty>

l&ohozo mpleﬂ
Le

m aoo John: epd

1&0’&030 Semantic
A dummy st smont executes no operatism., It may sarve to place
a label,

4.5s Conditiona Statemertis

4.5.1, Syntax
<if clause> ::= Af <Booleun expression> fhen
<unconditisc Al statement’> :3« <basic statement> l‘-ffor stutcmmt)l
<comp wd statement> {<blocic>
<4f statems t> 3= <if clouse> <mccaditlional Lvtaimrfbl
<lab# »1<if stotement>
<conditionz utatemert> :3= <if statesent> |<Af statemont> glge

<stal gont>




heb5.2e Bxomples
if w0 jhen nose med
L vu ihen ¥V t g = rem elge 20 Lo R
i 9<0VPQ thep AA: bogin iL o thep a = v/s
glge y s= 2 r e sod
glve if v>u then & = v-q glag if voa-1
then g0 0 S
Lo503, Sementlies
Conditional stetements cause certain statements to be executied or

gkipped deperding on the ruaning values of specified Boclean expressions.

ba50301s IL statement. The unconditionsal stetement of an if statement
will be arecuted if the Boclsan expression of the if clause i3 tirueo
Otherwiss it will be skipped sand the operation will be continusd with

the next statenont.

H050307: Conditional atatemsnt. According to the syntex two diflfarent
foran of conditional stutements ére possible, These may be illuztrated
ag follows:

if Bl thon S1 glge if E2 then S2 olse S3 3 S4
and

42 B1 ghen S1 glse if B2 then S2 gles i B3 thun S3 3 S4
Haers Bl to B3 ure Boolsan wxpressions, while Si to S3 are unconcitiomal
statemonts. 54 is thoe statenent following the caplotc conditicnnl
statement .

The exscution of & corciticnal statement may de described as fellows:
The Bosisan yrpression of the if clauses ure sveluated one after the other
in sequance from left to right until oms yielding the valus iy is foundo
Then the unconditional statument following this Boolean is exscutsd.
Unless this statament defines its successor expiicitly the next statement
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to be exscuted will be 34, i.e., the statement following the complete
conditional statement, Thus the effect of the delimiter glse may be
described by saying that it defines the successor of the statement if
follows to be the statement following the complete conditional statement.
The construction
glse <unconditional statement>
is equivalent to
glae I1f irue thep <unconditionznl statement>
If none of the Boolean expressions of the 1f clauses is true, the
effect of the whole conditional statement will be equivalent to that of a
dumy statement,
Por further axplanation the following picture may be usefuls

T

¥
ummmm?mmwulnss 3 8
t ¥ )

Bl false B2 false

hoB5obo GO T0 irto s conditionel statement.
The offect ¢ a gg Lo statement leading into a conditional statement
follows directly from the above axplanation of the ef’sct of glse.

4s6o . Por statemn mts

hobs1l, Syntax
<for list ¢.ement> i1= <arithmetic amesio»?
<arithmitic expression> gtep <arithmetic expressior> yptil
<arithmitic expression> ' <arithmetic exprescion> while
<Boolea: expression>
<fer list> g <for list elomsnt> I<fa' list>, <for liet element>
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<for clause> $i= faor <variable> = <for list> do
<for statement> ::= <for clawse> <statement>
<labal>:<for statement>

46,2, Examples
for q := 1 gtep s until n do Alq] s~ Blq]
for k=1, V1 x2yhile I<N gdo
ier § s= I+G, L, 1 gtep 1 uptil N, C+D do
Alx,3] = Blk,3]

hebs3. Semantice

A for clause causes the statement S which it precedes to be repeatedly
exscuted gsero or more times, In addition it performs a sequence of sssign-
ments to its controlled variable. The process may be visualised by means
of the following pictures

¥

Initinlize 3§ test ; statement & ;3 advince 3 sucoessor .

1

for list exhausted
In this picture tie word initialige msamss perform thi first assigment
of the for clauwsc, Advance msans: perform the next aisigmment of the for
clause, Test detarmines if the last assigrment has bien dons. If soy
the exscution coriinues with the successor of the for statemsnt. If not,
the statement fol loxing the for clawse 1s executed,

bobolho The for list elements
The for lds: gimarnhforobtd.ningthovumsuhichm

-

e o e+ ¢ o e
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consecutively assigned to the controlled variable. This sequence of
values is obtained from the for list elsments by taking these one by one
in the order in which they are written, The sequence of valuss gemsrated
by each of the three species of for list elements and the corresponding
exscution of the statement S are given by the followirg rules:

hobokholo Arithme.ic expression. This element gives rise to one wvalue,
namely the value »>f the given arithmetic expression as calculated immedia~
tely before the corresponding execution of the statement S.

4oboho2s Step~uniil-element. A for elsmsnt of the form A ptep B ymiil C,
are aritimetic expressions, glves rise to an execution which may bs
described most concisely in terms of additional 201 statements as
followss

V = A 3

L1 ¢ if (V-C) x Jign(B)>0 then go £ Element exhousteds

Statemsn: 3 .

Vi=VT+ 3

Rell 3
vhere V iz the coitrolled variable of the for clause &xl Elemsnt exhausted
points to the evaluation according to the naxt element in the for list,
or if the step~ur..il-element is the last of the list, {0 the next statement
in the program.

Lobeke3s HNhilg--ilement. The exscution governed by & for list element of
the form E while 7, where E is an arithmetic and P & Foclean expression,
is most concisely described in terms of additional AICOL statements as
follonws:

e e o i e e e i e i TR




I3:Vse=E 3
iL — P then g0 10 Element exhausted 3
Statement S ;

Riol3 3
where the notation is the same as in 4.6.. .2 above.

'ho6.50 The valvs of the controlled variable upon exit.

Upon exit cut of the statement S (supposed to bs compound) through
a8 go o statemer: the valus of the controlled variadble will be the same
as it was immediitely preceding the execution of the go io statement.

If the exit is dus to exhaustion of the for list, on the octher hand,
the valus of the controlled variable is undefined aftor the exit.

‘b0606o Go to laading into a for statement
The effect of a g 1o statemsnt, outeide a for astateme:t, is undefined.

4o7. Procedurs Statemsnte

hoTelo Syntax
<actwal par mster> 31= <string> |<axpression> | <array identifier>
st 4d mtifier> '«u:ltch identi tiar> | procodure identifier>
etter string> f3e dzttqr;ld.etter string> <lotter>
<pareneter lelimiter> t1= , |<letter string>s(
<actual par mster list> 33= <actual pmmoter>l
<actual raramster lirtd> <paremster delimiter:-
<actual aramster>™
<actual par moter part> 3= <ampty>l
(<actual parameter list>) .
<procedure :tatement> $3= <procedure identifier:-
<actual aremester part>

e e e e



LeT.2. Examploes
Spur (A) Orders (7)Result tos (V)
Transpose (W,v+l)
Absmax (A,N.M,Yy,I,K)
"nnerproduct(A[t,P,u],B{P],10,P,Y)
~mong (V,W y¢ 1) ‘
These examples c:rrespord to examples given in secticn iolozo

b4eT7:3, Semmntic:

A procedura statement serves to inmvoke (call for) “he exseution of
a procedure body (cf. section 5.40 Procedure Dsclarations)., Where the
procedure body iz a statement written in 20AL the effe:t of this exscu~
tion will be equivalent to the effect of parforming the following opsrations
on the program:

407.3.10 Value ¢ ssigmment (call by value)

All formal )arameters quoted in the value part c¢f the rrocedurs
doclaration head: ng are assigned ths values (cf. secticn 2.8, Valuss and
Types) of the co: responding actual parameters, these es:igmments being
considered as be: ng performed explicitly before enterir; the procedure
body., These fori al parameters will subsequently be tre:ted as local to
the procedure bo yo

bo7.3.2, Name rcplacement (call by name)

Any formal ;ax meter not quoted in the value list :s replaced,
{hroughout the p: ocedure body, by the corresponding &ctual parameter,
after enclosing { his latter in pareantheses wherever syritactically possible.
Possible conflicis between identifiers inserted through this process and
other identifier: already present within the procedurs body will be
avoided by suital 1 systematic changes of the formal or local identifiers
involved.

e ———————————



LeT7e3e30 Body replacemsnt and execution
Finally the procedure body, modified as above, is inserted in place
of the procedure statemsnt and exscuted.

heTohe Actual-formal correspondence '

The correspondence between the actusl paremsters of the procedure
statement and the formal paramsters of the procedure heading is estab-
lished as follows: The actual parameter list of the procedure statement
must have the same number of entries as the formal parameter list of
the procedure declaration heading. The correspondence is obtained by
taking the entrices of these two lists in the same order. "

4.7.5. Restrictions

For & procedure statement to be defined it is evidently necessary
that the operations on the procedure body defined in sections 4.7.3.1 amd
4072352, lead to a correct 20/\L statement,

This imposes the restriction on any procedure statement trat the kind
and type of each actual parameter ba compatible with the kird and type
of the corresponiing formal parameter, Some important particular cases
of this general :ule are the following:

4070541 String: cammot occur as sctual parameters in procodure state-
ments calling prigedure declaratiors having 20AL 60 statemonts as their
bodies (cofo sec-ion ’40708)0

L0Te5420 A formil paramester which occurs as a left part varlable in an
assigment statemsnt within the procedure body and which is not called
by value can only correspond to an actual parameter vhich is a variable
(special case of expression].
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Lo7+8s Procedure body expressed in code

The restrictions imposed on a procedure statement calling & procedure
having its body axpressed in non-ALGOL code evidently can only be derived
from the characisristics of the code used and the intent of the user and
thus fall outeide the scope of the reference language.

£oB8, Code line

408:1, Syntax
<code line> s:= <line of codc>4'
<line of code> i:= <instructlon desigmtor> j<macro deaigmtox‘>‘<mpty>
<instruction designator> t:= <operation designator> <address expression>

<operation desigmator> $i= <any of the operation mnemonics of the
computer machine code>

<macro designator> gi= <macro identifier> <actual parameter part>

4.8,2, Examples
ClA > Xom‘r
sTF | (X + (B) )&
@p (2, ((A9)-(h13)), 7)¥

4o8:3. Semantics

The code line i3 the unit statement in machine-lile symbolic code.
In the case of macro designators, the parenthesis comventions of the
actual paranmcters must match the requirements of the formal parameiers
in the corresponding macro declaration

4.9, Macro Statemcnte

o ———— A e e



409:9. Syntax
<actual elementary racro parameter> t3= <string not containing parentheses
<BoBMePa> or >

<actual macro parameter> tis <@,8.MePo> l(«.m.pelo>)
<BellsPe>

<actual macro-raramster list> 3= <a.m.p.>| <@cllePolo> ;, <MoMePo>
«oﬂopob

<actual macro parameter part> ti= <empty> l (<acmopols>)
<macro statement> t1= <mcro identifier> l <actul macro parameter part>

4e9e20 Exmmples
Innerproduct ( ACt; P, u), B[P], 10, P, Y )
Among ( (RAT) $ 1, W, C)

ho9:3. Semantics

A macro designator specifies that the following sequence of
events trenspire:

(1) In a copy of the macro declaration corresponding to the
macro desigmtor, the set of characters specifying an actuml parameter
are substituted for their ocorresponding formal paramsters in all places
of the latter's ocourrence in the macro declaration. Then

(41) The altered (copy of the) declaration replaces the macro
statement which called it and then

(111) Processing continues at the code position previously
occupded by the macro statement.
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5o Declarations

Doclaretions serve to define certein properties of the identifiers
of the program. A declaratior for an identifier is valid for one tlock,
Ouiside thiu block the particuvlar identifier may be used for other
purposes (of. section 4olo3).

Drrpmically this implies the following: at the time of an entry
inso & bloek (through the begin, since the labels inside are lccal ard
thorafors limccessible from outside) all identifiers declared for the
bluck assume the significance implied by the mature of the declarations
given. If thesze idsntifieres Lad already beenn defined by other declarstions
oulside they are fcr the time being given a new significance. Identifiers
which are not declered for the block, on the other hand, retain their old
mening.

A% the tims ¢l an exit from a block(through epd. ar by a go to
st bement) all identifiers which are declared for the block lose their
sinifdicerse again.

A declardation may be marked with the additiomal declarator oxn.

Th's baz the following effect: upon & resntry into the bleck, tha values
of oo quanltitise will be unchanged from their values at the last exit,
wale the values of declared variables which are not marked as oy are
utefined, Apart {~om labels and formal parcmeters of procedure declara-
ticns and with the nossible exception of thoue for standard functions (ef.
sections 3.2.h4 and 3.205), all identifiers of a program must be declared.
Yo identifler masy by declared more than once in any ome block head.



Syniax.

<Reciosatlons 1t= <type declaratl om> g<maw deciaration> imﬁt;ch
deelaration> g<mced\n'e declaration> ]'ﬁnacro declamtiexb'
c:mmmwtw declaration> I<squivalexxce d(aclaratioxp,
Jdidbrary decls ratiorn> |<eomtant declartion>

§s3- Tyzs Dselerations

5.3h0 Oyntox
<pye Yatd 2= <glrnple vm'iabize>'
<ainple veriskler, <type list>
<type> o= rﬁﬁl{m.mimf&slmlm&.l
<lesal or o Lyped> ite <type> jam  <type>
<typs declaration> ;= <local or own typa> <typo list>

S5clec FRyumplen
intriger p,q,s
ovn Boclean Acryl;n
logi.cal. Student, 27
Sebede Sumenbics
Typt decliirat’ ong sarvs to daclare certain idemtifiers to reprosent
sinple varisbles of a givan type. Raal declired variables may only assume
poritive or megativy valuas including sero. Juteger dsclared variadles
may only uscsums pon.itive and negative intagrel values including zero,
ani. be rapresented in either decimal or octal. form. PBaoleap cleciarsed
variables miy only .ssume the values irue anx: false. Ilogicsl declared
variables ave binarr strings. List declared variables are empty lists
ocontaining one infarmation site. Jpdox declared variobles are index regiaters,
In sritlmstic expressions any position which can be occupied by a
rasl declared variable may be cosupled by an intagae declared variable.
For the semntics of gy, see the fewrth paregreph of section 5 above.




5.2, Arevey Declarations

5s2.1o Symtax
Aoy bound> g3« <arithmetic expression>
<uapper bound> gt= <urithmetic expression>
<bound pair> :t=  <lower bound>t<upper bound>
<bound palr 1ist> 33« <bourd paird ﬂ <bound pair 1list>, <bound pair>
<arrey sapment> ti=  <array identifier> [<bound pair list>)
<prroy idantifler’, <arrey segment>
<arrey List> s <array umxzbl <array list>; <array scgment>
<srray dsclaration> sis grpay <array list> I <local or omn type>
85737 <array list>

502020 Eumples
BTy &, b, ¢[7n,2:m], s[-2:10]
owo integer array A(if c<O then 2 alse 1:20)
res’. array q(-73-1]
Seiio3e Scmeatics
An grray decliration declares one or several identifiers to represent
multidimansional arays of subscripted variables and gives the dimensions
of the arsays, the Dounds of ths subscripts and the typss of the variadbles.

5s503.10 Subscript bounds. The subscript bracket following the idemti-
fier of this array in the form of & bound pafr list. Each item of this
1ist givas the lowes* and upper bound of & subscript in the form of two
arithustic exprsssions separated by the deliniter: The bound pair list
glves ths bourds of all subscripts talen in order from left to right.

5520302, Dimersiors, The dizensions are given as the nmber of entries
in the bourd pair lists.
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54203630 Types. 41l arrays declared in one declaration are of the same
quoted type. If no type declarator is given the type real is understocd.

5s26h0 Lower uppe:r bound expressions

5420401 The exprassions will be evaluated in the same way as subscript
expressions (cf. saction 3.1.462).

5s20he2s The exprussions can only depend on variables and procedures
which are non-local. to the block for which the array declaratioan is valid,
Consequently in th: outermost block of & program only array declarations
with constant bouris may be declared.

5¢24l4630 An array is defined only when the valuss of all upper subscript
bounds are not smaller than those of the corresponding lower bounds.

562ekskse The exprissions will be evaluated once at each entrance into
the block.

54205 The identiiy of subseripted variables

The identity of a subscripted variable is not related to the sub~
script bounds give: in the grray declaration. However, even if an array
is declared oym th: values of the corresponding subscripted variables
will, at any tinme; be defined only for those of these variables which
have subscripts wiihin the most recently calculated subscript bhounds.

503, Switch Declarations

503.1. Syntax
<switch ist> :i1= <designational expression>
<switch list>, <designational expression>
<switeh declarationr sie gylteh <switch identilisr> g=» <switch list>
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5036dc Examples
pdich S 1= 51,52,Q(m], if v>-then S3 alas S4
mrteh Q 1= pl,w

503030 Semantics

A switch decluration defines the values corresponding to a mwltch
identifier, These valuss are given one by one as the values of the
designmtional expressions entered in the switeh list. With each of these
designational expreisions thers is associated a positive integer, 1, 2,
ssoy obtained by counting the items in the list from left to right. The
value of the switch designator corresponding to a given valus of the
gubscript expression (cf. section 3.6, Designational Expressions) is the
value of the designitiomal expression in the swdteh list having this
given value as its associated integer.

5s3.40 Evaluation of expressions in ths switch list

An expression in the switech list will be evaluated every time the
item of the list ir which the expression ocowrs is referred to, using the
current valuss of ail variables involved.

5.3.5. Influence o scopes.

Any reference to the valus of a switch desigmator from outside the
scopo of any quantiiy entering into the desigmatiomal expression for this
particular valus is undefined.

Selso Procedure Declaretions




Selisls Syntax
<formel puramater> :t= <identifier>
<forml peramster list> 3i= <formal parameter> l
<formal paramcter list> <parameter delimiter>
<formal parancter>
<formal parameter port> giw <uwby>|(<toxm1 peramster list>)
<ddentifier list> f:= <ldentifier> |<1.dent1ﬁer list>,<ddentifier>
<value part> 11+ yalug<ldentifier list> ; |<smpty>
<specifier> s3= ptring |<typa>l ATAY '<t.ypo> ml“lgﬂigh'
uronsdure <ty e>urocsdure | st
<specification part: 11~ <empty> |<specifier> <idenmtifier list> ; |
<specificatior part> <specifier> <identifier 1list>
<procedure heading> :1t« <procedure identifier>
<forml paramcter part> § <specification part> <value part>
<procedure body> 1:: <statement> l <scode>
<procedure declaration> gi=
mocedine <procedure heading™> <procedure body>
<type> precedire <procedurs heading> <procedure body>

Sckie2. Examples (sce also the examples at the end of the report).
precadury: Spur(a)Order:(n)Results(s) ; yvalua n 3
auy & 3 intagern 3 reals 3
begin in‘ager k 3
st=0 ;
for ki=lptep l uxtil ndg & 1= 5 + allk,k]
ol
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Exnmples continwsdy

precedrs Transpose(a)order:(n) 5 wluan 3
srray & 3 ipnteger n 3
begin resl w 3 integer i, k3
for i s= 1 ptep 1 until n do
‘mk:-1¢im1m.unm
begin w 1= alik]
al1,x] s= alk,i] ,
alk,i] 1= w
snd
end Tran:ipose

ipteger ixocedwre Step(u) § pealu 3
Step := if OuAugl then 1 slse O

procedur: Absmax(a)sises(n,m)Result:(y)Subsoriptss
(3,) 3

coument The absolute greatest element of the matrix a,
of size n by m 1s transferred to y, and the subscripts
of this element to 1 and k 3

arays sintegermem, i,k 5 realy 3

begin in'ager Ps q 3

Y«=0 3

foarp:=latepluntil ndo forqs=1patep 1l untilmde

iz avs(elp,ql)> y then begin ys=abs(alp,ql) 5 1s=p
Ki=q

and and Abemax
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Exarples continued:
mocedure  Innerproduct(s,b)Orders(k,p)Results(y) ;
Yalue k3
dnteger k,p 3 ISAL Ysasb, 3
begin real s
8t=0 3

forpi:=lptepluddl kdos twstaxb 3

yies

opd Innerproduct

504.3. Semantics

A procedure declaration serves to define the procedure associated
with a procedure identifier, The principal oconstitusant of a procedurs
declaration is a statement or a pisce of code, the prooedure body, which
through the use of procedure statements and/or function designators may
be activated from other parts of the block in the head of which the
procedure declars*on appears. Associated with the body is a headirg,
which specifies certain identifiers occwrring within the body to represent
formal paremeters. PFormal parameters in the procedure body will, whensver
the procedurs is activated (ef. section 3.2. Function Designators and
section 47, Procedure Statements) be assigned the values of or replaced
by actual parsmeters. Identifiers in the procedure body which are not
formal will be either local or non-local to the body depending on whether
they are declared within the body or not. Those of them which are nomlocal
to the body may well bs loocal to the block in the head of which the
meeature declaration appears.

Sehoko Values of function desigmators
For a pprocedins declarstion to define the valus of a function
mmm.uwmmw.mumet
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a value to the procedure identifier, and in addition the type of this
value mst be declared through the appearance of a types declaretor as
the very rirst symbol of the procedure declaration.
Any other occurrence of the procedure identifier within the procedurs
body denotes activation of the mrocedure.

54050 Specifications

In the heading a specification part, giving informition about the
kinds and typos of the formal parameters by means of an obvious notatien,
may be includeds, In this part no formal parameter may occur more than
once and formal parameters called by name (cf. section 4e7.3.2) may be
cmitted altogether.

5.4.6. Code as procedure body

It is understood that the procedure body may be expressed in non-
20A L langumge. Since it is intended that the use of this feature should
te antirely & question of hardware representation, no further rules conoern-
ing thiz codo language can be given within the reference language.

5.5, Macro Declaretions

545¢:1c Syntax

<macro heading> si= <mcro identifier> <formal paramster part> 3
<specification part>

<macro body> 33= <statement>

<nacro ¢ ;claration> ::= pagro <sacro heading> <macrv body>




5,502, Examples
macre  Innerproduct (a,b) Orders(k,p)Result:(y) 3
integer k,p 3 real S 3
S: =0
for pt = |gten| smtdd k g0 Si= Seaxb 3
¥t =S epnd Innerproduct
macre Among (x,y) Predicates(B) Exit:(L)

st ¥y 3
Boolpan B
dogical x

coument B is irue if and only if the logical variable x 1is
an (indirect) element of the list y ;
begin seqe(y,L) 3 B: = false 3
S: If ylp,*] $-1 # OAy ¥,f) =~ x Thep begin Bs= irus ;

slse gotoS wmiglam.
1)

and Among.

5¢5:3s Semantics

A gacro declaration serves to define a macro associated with a
macro identifier. Macros only exist in the processing interval from their
point of definition in the lexicogrephic sequencing of code to the gpd of
the block in which they are defined — and, in time, only during Pass 1.

The principal constituent of a macro declaration is a statement.
Associated with the body is a heading, much as with procedures, except the
concept of pame, Yalue have no significance with macros. Whenever a macro
is called, the formal parameters in the macro body will be replaced by the
actual parsmesters corresponding leading to a new section of 20\ ¢xde
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which will then bs immediately subject to processing. Replacement is
understood to occur simmltaneously on all parameters -- all their

occurrences in the macxo body,

5650k4¢ The replacement process
Any string of charecters satisfying the syntactic rules of actual
mecro parameters, (see section 4.9) may replace an identifier.

5,6 Equivalent declaration

5.6.1, Syntax
<inner element> ::» <simple variable> i
<outer element> s:= <simpls variable>| <subscripted varisble>
<gimple pair> ::= (<inner eloment>, <outer element>)
<pair list> :i= <simple pair> l‘<pnir 1ist>, <simple pair>
<aquivalent declaration> ::= egquivalent (<pair list>

506020 Mﬁﬂ
equivalent (A,B), (TAU, PHI [1,301])

5.6.3. Semantics

An equivalent declaration declares an identifier, (the inner element)
within the block containing the equivalence declaretion to be~-in every
respect—identical with an identifier(the outer element) declared in an
outer block.




5.7, ILibrary declaration 5

5e¢701¢ Syntax
ddentifier list> = <ddentifier> '<identifier list>,<identifier>

<library declarstion head> :i= <local or own type> |<empiy>

<library declaration title> ::= library lljhm procadure
<library declaratior> 3:= <library declaration head> <library declaration

title> <identifier list>
5@7520 Examples
library RANDOM, NTHROOT
integer Mbrary SORT
library procedure X, MTXINVSE

5.7:3. Semantics

The 1ibrary declaration serves to call a machine coded, non 20°‘L,
procedurs from the library. Connectlon to the procedure is made by a
standard procedure statement. All storage requirements, except actual
parameters, are provided within the library.

The Library procedure declaration caliz a 20AL procedure
declaration from the library to be substituted in the 20”'L code for the
occurrence of the library procedure declaration. Substitution of these
procedure declarations is made in the left to right order of their names in
the call.




Part II Flow Charts for 20" P.

l. Philosophy

Flow charting an operation of a processor such as 20\P must
inevitably be complex and--at times--somewhat machine dependent. Every
effort has been made to minimige references which are of the latter kind.
Nevertheless, whera they are required, specific machine mujuctiona will
be used and their explanation given at that time. The flow charts will be
given at several levels of description and the detail at any given level
willbe a function of the processes being described. Soms descriptions
will be in text, others in a semi-formal notation.

Flow charts are extremsly difficult to read under the best of
circumstances and the use of formal notation exclusively makes them elegant
but impossible to comprehend. However, occaaionally it serves the admiredble
purpose of a shorthand notation and it will be used in such places and
defined at the point of use.

As has been mentioned the processor operated in three phasess
Pl, P2, P3, loosely described as passes over the code.

Fl is an assembly phase ard a trmlgt:lon phase

P2 is & compiling and loading phase,

P3 is a rumning or operating phase.

Intervening are two transition phases T1, T2, which work on tables
prepared during passes P1, P2 ; and P2 F3, respectively. During these
phases for many of the 20/M. elements there is a point of declaration (D)
and (often several) subsequent points of call or use (C). The notation P1,D
will refer to some action taken at a declaration during pase 1.



2. Pass 3 Disposition

The processing becomes more clear when a storage map of a 20\

progrem is specified. Schematically it iss

Flow Chart
designation
own arrays FO
fixed arrays FA
Fixed Data Storage constants FC
scalar variables F3
list table FL
Librery L
and
Administration BA
List Storage Pool 8P
Program P
Dynamic arreays DA
and
Scalars DS
Perameter stack } ]

Distributed through this storage certain table
or most programs: They are:
1, The list table
2, The active block or porcedure table
3. The parameter stack

Lo The exit stack

s are present in all

Lr
ABT
Ps
ES

During P1,D as a block is encountered ( hegin declaretion ... ) it is

assigned a name (Br), a level (Bs), and a tag (Bt).

The mames are positive

integers satisfying: If the block bagin of & blocke occurs (lexicogreph-

ically) before the block begin of a block B then Bge < BErge The levels

58
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specify the depth of parenthesis nesting with begin an opening parentheeis
and sod » closing ons. Each lsvel BE will correspond to an assigned
Index register, The block tag (Bt) specifies whethsr the block is irtermal
to a procedure(Bt = 1) or not(Bt = 0). The term l-blouk or O-block will be
used to distinguish blocks by this property. l-blocks can, of course, be
part of a recursive process and its declared variables must be treated
dynamically,

In the case of l-blocks, P1,D must generate code operative during
P3,D which supplies information to the administration routine BA. The
information supplied mus. carry to BAj

(1) The block name
(41) The block level
This information is added to ABT in an augmented table line:

Block name Block level Base address

r 8 Ax

Ap had baen generated by ABT and then indo: register S is loaded with Ar,
In either case, for l-blocks and O-blocks, & code line is entered
into the Code Block Table (C B T) active during P1,D:

line mmber Bt Block nemo Block level Base address

'7 g r s -




3. Code generation and Table Generstion
During Pl and F2 various code and table generation actions take
place, If & table has the name » then () ¢ indicates the line at
which & marker is poised. () * indicates that the marker has boen moved
forward one line. If () has & fiald strusture, substitution into and
extraction from fields is indicated by a variety of obvious notations.
Thus, e.g.,
CBT # €= 5,,Bt,,Br,B8, i
specifies that the contents of Bt, Br, ani Bs are put into the 3, 5, ¢vd
6thfield of the next line of CBT and iwJ (blank) into the 7th field.
During P1, codo generation occurs. This code is either 20°L code
(say, as a result of macro calls) or a form of 3 address code, written, e.g.,
T3. 6.72. M1
meaning 7’3 €72 © V71 in conventional notation. In a given line any of
Y1, Y2, 73 may be missing. A collection of 3-address code will be recog-
nised a8 being collected as a unit by the notation
(s &0 Ga0 eoer G
where each &, 1s such & 3-address code line.
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The operators 6 will be those most immedistely derived from the
semantios of

The operators € will be those most immediately derived from the
semantios of 20/\L operators. A table containing the notation and meaning

or all such follows: ~
3-address operator table

aritmetic
+ addition
x - pultiplication
/ division
§ integer division
T exponentiation
41 store in parameter stack|
MT mark transfer
T store
Ph procedure begin
Pe procedure end
Bh block begin
Be block end
L label

In P2 the three address code is converted into machine code.
Here, detailed knowledge of a machiny is necessary and only the generel
method of such translating can be discussed without becoming overinvolved
in specific computer details.

In Pl, where the major assexbly and translation functions are
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accomplished there are two major code sequences:
(1) 20/\L (input) code
(11) List organiged three-sddress code,

The organisation of these two code sequences is quite different.

(1) is organized as a linear chain while (11) is organised as a tree,
The fundamental distinction is the mode of their sequencing. Each has
& marker denoted by & sub-line ,'I\,; and this marker moves through the
sequences in different ways. To be specifics

In the case of

(1) The marker may move relative to its current position
designated as I ¢ (Input-current)--any maber of character positions
(spaces excluded) baclomrds or forwards.

Whereas

(11) The marker mey only move back by moving forward to a
list sentinel and up several lists higher in the tree structure, through
the application of the sequence procedure "up". On the other hand the
code position 8 ¢ may itself have substituted into it an entire list through
which the marker position may pass or by-pass as occasion demands,

In the case of Pl the scanning of the input sequence (IS) is the
clocking mechanism: The mmber of characters to the right of the marker
is non-decreasing.

The scamner is quite elementary. Characters are either components
of identifiers, mumbers, truth values, or delimiters. In the case of
identifiers and nubers, these syntactic units are multi-charactered,
and, when encountered,are accummlated in an accumulator mtﬂ?dolimiter
is reached. In this context this delimiter is known as a terminal element.

The scanner is under ocontrol of Pl translator routines each of

which has a sst of terminal elemwents, the occurrence of which create the




conditions under which these routines select their actions,

Of course, these termimal elements may themselves serve to activate
translator routines,

In order to organize the translation scheme, the &3 code itself
is the master control scheme. Sites in the © code may contain the names
of translator routines, e.g., X, designated {X} , or, of course,
3-address code. Progressing through the & code now specifies the control
organisation of the translation process.

As a matter of eftibioncy, cartain translator routines have their
own sub-control organization; for example, the "expression" translator, and
that for some of the declaratioms. Indeed, the "expresaion™ translator
produces 3-address code in a block rather than a list.

In the case of many of these special routines, the sub-routines
function when certain character sequences occur in IS. Their ocourrence
causes certain actions, these are combinations ofs

(1) Code generation
(11) Substitution into, and movement of the markers
in, IC and &C
(111) Operations on the auxiliary tables generated during
the Pass.

These actions will be noted in the form of productions:

B SFL =~ Au)Goyoor, Ay 3 Rk e Y
meaning: If the character string § is of the form (F) S then actions
ai,a, saeyd, @re accomplisheds following which, &« 1is the label of the
next production accomplished. If not of the form, ¥ is the label of the
nsxt production,
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h. The flow charts proper,

The analysis of a zoAL progran is controlled by the
block structure of 20 AP. Thus the flow charts naturally divide into:

(1) The analysis of declarations since they define

that vhich occurs at the beginning of a block.

(11) The analysis of statements since they form the
content of a block,

(111) The analysis of expressivas since they form the
content of most statements.

(iv) The annlysis of identifiers since they forn the

ocontent of most expressions

(v) The analysis ofsthe block end gince administration of
storage and identifier gsoopes is controllad in that way.

The flow charts reduce zoAL in a 3 address pseudo oode
n'us oertain tables out of wvhich & machine dependent Pass 2 would pro=-
duce machine code.

The 3 address code 80 produced is itself tied together in

a list structure. In general, the notation of the charts will be that
of 20 AL.

5. Flow charts for declarations.

Hoa:: J2 I[ ,*] » ° pegin then
begin 1srt( O[,¢])s14st(0[,*]); 1[,%]
g0 to main declaration end
slag
12 1[,¢] = 'Rlend’ them
begin go to Hloock end gugd
elge go to statement




sopment The next step is to check the occurrence, if any, ot
8 declaration;
Hain declaration: pagro declare (U,V) lgbel Vi
hogin 4L 1[ ¢] = U
then
begin NI Blockhead; go to V end end
declare( ‘own',ownl)
real: declare( 'real, reel 1)
declare ( 'integer', integer 1)
declare ( 'logical', logical 1)
declare ( "index?, index 1)
declare ( *lipt® , list 1)
declare ( ‘Doolean®, Doolean 1)
arrays declare ( ‘array', array 1)
declare ( ‘procedure’, procedure 1)
declare ( 'library®, library 1)
declare( *equivalent', equivalent 1)
declare( °pacro!, macro 1)
1¢ 1[,¢] =porment’ the go to corment
12 I[,¢] w'valuo® thep go $o value
go_%o compound
Qotgent The preceding is the switching table for deciarations in ZOAL
Dlockhead: } Bim g+ 1; v tm r + 1; orblk = p;
£leld( 2, IT [ | ) 1= $rye
BT [,*] == Dt, | (r),(s)



Blockhead 1 1 Iz Bt
begin  isxt ( 3, o[,¢])
o[,*] 1= code 1ine ( * _. Ba ,| (&) . (8)*)
o[,*]  code 1ine (‘_ . MT | (BA) ) end
g9 to | (Blockhead)
cocment 1. orbh: holds the index of the ocurrent block being processed
2, Zfield gains accsss to the fields of tabloes
3. DBt is 2 block flag indiecnting whether the blodak is interior
to a procedure declaration
4. ocode line igs a procedure genarating its actual parameter
as a ocode line
5, BA 18 a fimed looation whose contents specify the variable
location of the block adminigtration routines
own 13 delta [1] m txue; I[,¢] = °dalar’; I[,*]; go_to real

e Ty wusewe

real 1: delta [2] e tyue; real 21 I[,¢] tm'dolaxrts I[,*]

go_to array
integer 1¢ delta [3] = trues go to reel 2

Doolesn 13 delta [5] tm frues go to real 2
index 11 delta [6] te tyua; index 21 I[,¢] = tdalar®s I[,%]
go_to declaration;
115t 13 dolta [7] e txues go %o index 2
array 1 ¢ delta [C] = txuq; go_to_indox 2
procodura 13 delta [9] := truc; Bt m tiwes I[,*]; procnest = procnest + 1
tert ( 0[,¢]); 128t ( O[,#]); 1axt (2, 0[,¢]);
paran im» 13 If I[,0] = letter
then
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then
bogin A 1= identifier acoumulated; indirect :m true
delta [12] s= time; NT identifior declared
0[,*] m code 1line ( e(A). Ph._..)
, next( 0[,¢] 1= ocode 1ine ( e(A). Pee_. )} I[,*]
12 1le¢] = ("
then
procedure 33 bepin I[,*]; 1f I[,¢] = letter
then
begin A = identifier acoumulated; MT identifier declared
I[o¢] 5 12 2[,¢] = *,* then go_to procedure 3
A2 1[,¢] = *)! then go to main declaration
else go to adlarm end
&lze go %o alarm end
elge go to alam end
ooment: The procedure name 1s declared and entered as having label chare
acter, Each of the actual parametars vhen declared is deolared with
indirect and param sot to true to indicate their ptatus. procnest speoe
ifiog the depth of procoedure nesting current.
declarationt bepgin J = 0
declaration 11 If I[,¢]  lotter then go to alarn 3
elge A = identifier acouwnulateds J = Jel; M[J] tm A
JT 1dentifier declared
I 2 [,elmty

then go to declaration 2
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glao it I[. ¢] = than oo %o declaration B

Qlue g0 bo olarm b
declaration £5 14 =1} Exprespion teminal [k] s m t]0
vy Expresslon Annlyzer
declerotion 38 0lo%] 3 = code tine (o (1[3]). € . £, 1)
OLy%] & = ceda Ldne (e (LI e s t.4)
i datd
than bepin 3 & w Jel; go to declaration ¥ and
alpg 38 Lo m Ty
them ga 1o declaration 1
olue 3F Ila.¢] & = 39 &hen o3 to decluration
slse go to olam 4
doclaration 43 Zox i ¢ =l pep X until 12 do delta [i]s= O
g0 %o statement end end
Comment dedlaration handles liste of Jdentilisw:e piocessing fho same
deciaration and; in pariloular, handles axray declaroiions. In 2ase of
arrayss
{1} of 2 dinenpions A [ms n, £t 8] there is compubed
ooiwan » abs (8~r4l)
space  w ool ¥ abg {nemil)
bage w» gtorage base -~ r ~ m % oolumn n
gterage hasow stoyago buge + space
and there is stored in the oddvego asoigned ¢ A and its suecesaoy, bage
and oolum, The wapping fumetion for A [£,3] Lo than basc 4+ J + 3 * colwan,
The wworession anelyzer provides €, 1 ag buse end €. I as columm;
sguivalont 12 Js w03 T [5%]
L8 I, @] ¢ "4 Lhew go to alagm 5

Ty w}: i¥ It,s] Jolatter fhay oo i a5



At = identifier accumulated; J: = jJelj I1[J]imA

Af X [¢] #°4° then go to alam 6

At = identifior accumulated; Jimj+l; M[J]: wA

AL I[,¢] = ?[0

then begin
equivalent 21 Kt ml; MT Expression Analyzer

3t @ el O[,*]: = code line (e([3]), 6~ t,1)

Ar = M[3]; indirect: = true ; MT identifier declared
equivalent 3: 121 [y¢]lme,

then go_to equivalent 1

-

121 [e] =iyt

Jim3el; At N[4]; LT ddentifier declared; Jimj+l
At = 14[3]; MT chein; go to equivalent 3
end
go_to alarm 4
comignt equivalent nokes identifiors within blocks identical to those
declared outsida. In tho case of a varieble oquivalent to an array this
oquivalence 1s established dynamieally.
value 13 I [,¢]s = dolar

value 21 I [s*]s 221 [,¢] # letter

69,

PUSES e s
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70.
$hen go_to alamm 3
At = identifior acoumulated; MT set value
121 [,¢] =m0y
then go_to value 2
A2 T [,¢] m oy
then go_to declaration b
f0_te, alara 4
sot valuet } delta [19]:- 13 NT identifier declared; go to set valys
Sompent  identifiers doclared as values have that property inseribed in
the identifier?s table.
Commentt I [ox]s 221 [0] m o0
t;xen go_to stataent end
Macrot I [,*]; delta [11]:= taue
121 [4¢] # Letter
than go _to alamm 3
Ay a identifier acounulated; }T identifier declared;
T [,*] 2 = A;
1 []s 1 [o%]
Macro 1t 12 I [,¢] » lotter
than begin
Amidentifier accuwnulateds MI [,%]s w AMNT ¢
end
121 [¢] w1,
then begin
I [,*]s go to nacro 1
ad

tnm——

FE,



181 [hel# 7>

MT ¢: = Macro file; string transfer terminal: = ‘end*
string trangfer stoxage: = nacro file
MT string transfer
Haoro fila: w liacro file ¢ string transfer nom
go_to declaration 1
Comment liacros are stored in sone ‘external’® file vhose index is in Macro file.
NT is the table of llaoros declared. II is the table of lMacro identifiers. String
trangfer is the table of liacro identifiers. String transfer is the name of a
progven vhich maps I [,¢]s up to the first nonenatching end, onto the lacrc filep
library; delta[13] = 15 I [,*]s 12 I [,¢] # procedure
then,
library 1t begin I [,#]; &£ I [4¢] = letter
then |
begin A1 = identifior accumulated; delta [12]: = 1;
MT identifier declared; go_to J.ibrary 1 end
121 [he]l w2,
$hen go to library 1
42T [o¢]m oy
then go_to declaration 4
fgo to alarxm &  end library 1
slse
1ibrary 25 I [,*], 12 I [,¢] letter
$hen,
begin Asm identifier accumulated;
Jt = library table (A)
J1 = tiald (2, J)
lart (2,1 [,¢])

next (1 [,¢])zw *Lbrary:




next next (I [,¢]): = procedure
1tst ¢ x[,¢])
oopy (I[,¢]e7)s go_to main declaration end
Coment 1library table ocontuaing sntries by name and pewipheral storage
location, Procedures named in lilhvewy declarations are called at the end
of Pass 2., Those named in library procedure declarations are ingerted into

the oodo at the point of name.

G. The emnlysis of expressions.

The expression analyzer produces 3 address oode from the analysis of
of expressions. It acts through encowntering deliniters. Tho delimiters
upon vhich it acts aret
’n By [o5 s ¥y »y <y S > #o $,% A, 9,2, %, 7% W] elge, theg,
=, sd, j» =, S,
The osder of their listing from ledt to right dotermines their oxder of
execution within on expression.

I [,¢] has the upual meening: indication of the current pogition in
the the input sequence:.

P [1] 45 the 41th position in the aseyet-unfulfilled expression stack,

72,

0 [J] 45 the Jth position in tho output sequence which is @ block., There

is an 0 [/,¢] which points to this bloaok,

Gsl, inolysis of ayseys.
Armays nay be characterizod hy two of thedr properties:
(a) They are of tixed (variable)dimension: a 0 (1)
(b) They ave declared in a dloak exterior (interior) to &
procedure b0 (1),
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The catalopue of actions in the 20ur oases are given in the following

tables

for A [1:- J]

Papg X

Pass 2

Pags 1

Pass 2

Pass 1

Pags 2

Pasg 2

Dedlaration
A=m0
A ¥ = bage

A+ 1t = ocodum

Adwn0O, bml

AmO, ba 0

ocode for —
A+ J+ A4l *14

etacution of above

cods for

A+ J+0]l %1 ¢ p,ulocal
or :

compute ﬁin BsAs TOUtine

storo p‘inI,

A+J+Ki*i+1,

Aml,bno
A & » bago

Ml = 0Olum

expcution of above
aml, bml

A [p]s @ bage

A+ [p] 1= colum

amoution of above

exeocution of above

code for __
A+ J+M1 M

exocution of above

Als] + 3 » A¢l[s] * 1 12 local

or

mute P‘in B.A. mtme
Stovep; in I,

exocution of above




el

Bx 33

begin

Ix 2t

hegin
sere——o

7.

cccccc

then

DA

boptn P [1] v = 1 [i¢]

if oparator (p[i-zfi ) A preceeds (P[1-2], P[1e1]
$hen go to Ex1

T[] gotoEx7 end

Iz I[.¢] = letter

then |

At = identifior accunulated

UL identifiar encountered

Pli]em a ¢A)

12 P [4+1] ® %4'AP [1e2] = delimiter

thm,

PA]lw e (Mg L w14l go toBx7  end
12 P [1-1] = *clpe’

P[1-h]m P [1]; 11ede3; go to BEx7 end
go_to alamm 11 end

I21 (¢l matoit VI [,¢] & 2?2 vI[,0]m= 200
then

L1 » number acoummlated

JT nunber cnocountered

PliJtme (; goto Bx2 ena

go to alavia 7

e e i "



Ex 1t 4= ie2} if avitimetio (P[1])

begin

I&

then
32 P [1el] = t,1 p Pl141] m tym

then

else
12 p[1<1] = t,1
then riml

else

iz P[in1] = t,1
then r31 = 1

6lgo ri= firgt availeble (temp)

rim first available (temp); tamp [r]msfalpe end
0 [J]m code Line (t,r. (P[1D.(P[2-21). (P[141]))
Jim 3413 P[a-1]s t,x P[] m P[142];

goto Bx7 end

42 velational (P[1])

then

Af P(iel]m t,1 $hen tep [1]: » txue

12 p[t91] m t,1 then tam [1]s tzue

G [3]1 = oodo 1tne (1]} (p[1-2]} BL2e1))

Jim Jel; O[j]m code 1ine (meJ. +€25. + & 25413

Pliel]m L, J; P[1]se P[142]; go to Ex 7 end

75

" rtsnin (1,n); ot wnax (1,m); texp [8] = Lxue end

AL loptoal (P[1]) A Dooloan (P[:I.-:l.])Anoolm‘ ®[n))

then

nts J4l



~orume.

qs = field (2, P[i-1])

rt = feld (2, P[141])

ts = fiedd (1, O[r])

2i0ld (1, O[r])s » ficla (1, O[q])
FERJENIE I o

fhen,

5t = field (4, 0[q])

2iald (B, 0 [aD1 = ¢

if chain (s)

then

ur s g

os = fiald (3, O [u])

field (3, 0 [u])t mt; goto Ex5 end
£161d (3, 0 [#])t m chain tag + ¢ ead;
12 P[] m iyt

then

gt = field (3, Ola])

25014 (3, 0 [q)t @ ¢

12 ohein (a)

then

ui = g3

81 @ field (3, 0 [u])

f1c1d (3, 0 [u])1 = t; go to Ix G end
field (3, 0 [r])s = choin tag + q and

P [4«1]t = P [341]: P{1)s = P [4+2]; g Lo Ex7 onds

76,
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l

i

77.
it P [1]w %2t P [142] = 1,0
then |
0[3]¢ = code 11ne (t020 +0 £320 £,1)5 Jimgel
0 [4]s - code line (ty2¢ +4 t42, @(1): 3t » 4l
T [3]t » code 11ne (t,2, abs. £,2. =)
Pi]iw o, go_to Ex 7 end
2P [1] =t pPl1e2] = 0]
khen o
0 [3]s = code 1ine ($,3. +, %, b, t, 3); Jimgel
© [3]t = oode 1ine (8,4, +. t,8. 6(1); Jimjed
0 [3]: = codo 1ine (t,h. abg, t,h.—);
Plims; gotomx7 eng
elog | |
2P L] e ¥ then,_g_q__t_g_ axpression,
127 (11w,
then
A£ proosw []
then
J1 m 3415 O [3]1 » oode 1ine (T, &-, ®el1-1]))
Jt = 3415 O [3]1 w oode line (~go to 0x1); Pla=1]est[1c];
Jt w 3413 O[3]: = code 1ine (blamk)
L [k]te3 end
I[v]s gotoEx7 eng
AL P[1] m ¥)s

then

i£ procsw [k]
then

————



Ex 52
Ex 62

Ex L

begin

kezin

g
5

[~ 4
&

75,

31 = §#1; O3]t = code line (I.fu(P[1-11)}
Jt = 3¢1; B[ 3]~ code line (—. L. | (R[K]))}
J3 = 313 O[1:=code line (go to (L [k]).
Pi-1]: = L{k]; kemk-13 1z =i
it = 1-15 1f P[1] = *(?
then
vi = 1; m: = 1; gotoEx 5 end
olse
iz =i~1; go to Ex 4 end end
3t = 13 0 [3] = code line (MT (P[1-1])
e
 thep
$ =V+1; I [,e); go to Ex 7 end
olse
33 = $13 0[3] = code ine (~st. (P[4+1)). TF (m})

E

begin

bogin

m: = mely i3 =102; 2o to Px 6 and

P[i-2]s = P[1-1]; 12 =1-2; I[,#], gotoEx 2 end end
Af P[1) w 1]

then

A7 P[1-2] «t,* , P(1-6] = tdelar!

then

32 = 301, 031 = code line (t,2.%.t,2.t,4)

31 = 31, O[3z = code line {t,l.%et,1ot,4)

31 = 391, BL3): = code line (t,l.tot,l.t,3)

Je o= 301, 5[3]: = code line (t,1, ¢, Storage base,#,1)

e
© e o o e



BEx 17:

begin

79.

3t = 3¢1; 0 [J): = code line (storage base, +.storage base,t,2)
Af proc nest 70

then

Js = 3+1, 0 [j]: = code line (e(P[1-5]), I,st. t,1)

J2 = 341, O[4)s = code line (e(P{1-51)Ts1. stit;h) emd
else_

3t = 3+1; O[J): = code line (e(P[i-5]). st. t, 1)

17 = i+l 8L = ads lme (&(PI2-6) g1, 5t &4 ) .

i¢ P1-71 # array then begin P[i-5]: ~P[1-7]; go to Bx 14 epd
alsa go to expression end

AL P [4-2) = ![* P [1-4] = *delap!

then,

3t = 3+1; O[j1: = code line (t,2.%.t,2.t,1)

33 = J+1; 0 [J): = code line (t,2.+0t,2. @ (1))

Ji = 3+413 0 [3]s = code line (t,l.¢ct,1c & (1))

J3 = 3¢13 O [J]: = code line (t,1.+. storage base. t,1)

3t = 34130 [J]1 = code line (storage base. +. t,2.storage base)
if procnest # 0

then

3+ = 3¢15 0 [4]s = code line ( e(P{1-3]), I. st. t,1) end
elsy

32 = §+13 0 (3]s = code line (e (P{1-3]). st. t,1) end end.
AL P [1-2) = 0,0

then

begin 4if nondynamic (P{1-5]) A procmest = O

Ex 12: begin

then
33 = 3+13 0 [3]s = code line (t,1.%.t,1. o(P[1-5]) + 1)

e e e



é.l. g'. T 3

35 = 3415 0 [§)s = code line ( I, +o t,1.t,2)
33 = 3+1; O [J1s = code line (t,l.st. (P{1-51), I ) emd

LI

df dynamic (P{1-5])A procnest = 0
Jhen go_to Ex 12

if nondynamic (P{1-5]1)Aprocnest = 1
then

if local (P[1-5))

32 = §+15 0 [§]: = code line (MT.BA)

J = $+13 0 [J]s = code line (£,2,4:2.1) end end
slae.

Af dynamic (P[1-5]) A procnest = 1

if looal (P[i-5])

-—_s

33 = 3#1;3 O3]z = code 1ine (t,1.%.t,1. o (P[1-5]41). I )
Js = 315 0 [3]1 = code line (t,1.+.t,1.t,2)
J1 = 3413 0 [51s = code 1ine (I. st. o(P{1-5], I )

------

Lt e

3+ = 3415 0 [31s = code 1ine (MY, BA)s g0 to Ex 13 and end.




8.

else,
ifr Pl1-2] = *[*

then

begin if nondynemic (P{1-3] A procnest = 0
then
Bx 14t begin J: = J+13 O [J1: = code line (I, st. t,1)
Jt = 3#13 0 [31s = cods 1line (t,l.st. e(P[1-3]))3
Ex 153 P[i-3]s » t,13 43 = i¢], go to Ex 7 end
alse

begin if dynamic (P{1-3]) Aprocnest = 1

£

bagin if P(1-3] = local

£

Bx 163 begin 31 = $+13 0 [J]1 = code line (I. sto t,1,I)
Jx = 34-1; _0-[.’]3 = code line ('t,lo“o (] (P[j-‘3]))

go to Fx 155 snd
alse

begin jt = jels O [J)s = code line (MI, BA); go to Fx 16 end
alse

begip if dynamic (P[1-3]) A procnest = O
then go to Ex 1k
slse
begin if dynamic (P{1-3]) Aprocnest # 0
then begin 4f local P[1-5]
then go to Ex 16
J3 = 315 0 (32 = code line (MI, BA); go to Ex 17 end

[ =l



8,

slse g to alam end; go to Px17 end
Ex 16t begin Ji = J+1; O [j]: = code line (I. st. e P[1-3], I...)
Jt = J+13 0 [5)s = code line (I. ste t, 1, Iowu)
g to Ex17 ed
Af P{1] = tthen'
then.
begin q: = field (2, P[1-1])
8: = field (3, 0 [ql);
field (3, 0 [ql): = 5+1;
Ex 92 Af chain (s)
then
begin u: = 83 83 = field (3, Olul); field (3, Olul): = j+1;
goto Ex9 end; I[,*], goto Ex7 end
alze if P [1) = 'slée then begin q = field (2, P[1-31);

s: = rield (4, O[q]);field (4,0[q)):
= J+l3

Ex 10; if chain (s) then begin us=s;
s:tield(4, Olu])rield(4,0[ul)s=3+1;
g to Fx10 end
I,*]; goto Bx7 end
alse if P[1] =3 thop go to statement .
eloe Aif P{1])= 'end' then go to statement

Ex 183 . 4£ P{4] = *(* then go to Ex 19
¢ P{41] = *[* then begin is=isl; go to EX 7 epd
go to alarm

Ex 193 4L P{i-1] = idemtifier

then



a3,

begin k3 = ktlj R(k]: = label
J3 = 3#13 0 [§1s = code 1ine (go_to 1 (R[k1))
Js = 3413 0 [j1s = code line (blank)

L [k]s = J; procsw [k]: = trus end
I[(,*]3 goto Ex7
Comnent - Actual parameters of procedures are coded as follows:

J;yeblank

Evaluation of

parameter into t,l1

Edrua of t,l into I
g to Jv

These parameters will be entered from procedures via & MT command, The
address J.,V = 1,2,3,000,q is stored in the currently available parameter
position in the procedure parameter stack. Thus the total coding is

g to K
code for parameter 1

(X XX 1

code Zor parameter q

code for storing J; imto TIj

code for storing qut.onq
K3 MT Procedure Name

————
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7. The Analysis of statements

Compound ¢ I [,#];  if I [,¢] # letter then go to compound 1
A: = identifier accumulated
if I [,¢] = *:* then go to compound 3
g0 to  compound 2

Compound 1: begin if I [,¢] = 'if' then go to if statement

——

if I [,¢) = 'go to?' then go to go to statement

if I [,¢] = *for' then go to for statement

gotodm_gﬁ

a—A 4

Compound 33 begin delta [12]s = 13 MT identifier declared;
0 [,#]): = code 1ine (_,« Lo e (A))

& to compoumd end
Compound 2: begin If I[,¢] = *(* then go to procedure statement

If T [,q] o tiut t}in_gg_to assignment statement :

It I [,¢) -'i['lt er go to assembly code

If I [,¢] = '3 then go to assembly code

12 I [,¢] = *37 then go to statement end

If I [,¢] = 'end' then go to compound end

1f I [,¢] = tblend! then go to bloock end end.
Assigment statement: isrt ( Of,¢]); blocklist (O[,*1)s O [,%]

go_to expression analyser
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procedure statements go to assign statement

if statements

cs=1; dsrt (2,0[c]); label (M(c]);

next next (O[,cls = code 1line (_. L.e(Mlc]))
list (O[,#])3 isrt (7,0(,c]); label (M[c+])
label (M[c+2]); 1ist (O[,*]); isrt (2,0[,£))
ol ,%#]¢ = recognizer (Boolean);

O[,%]: = eM{c+l]; O [,#]= e(Mlc+2]);

0 [,#]s = code line (_. L. e{M e+l]))

O[ ,*#]: = recognizer (unconditional statement)

0 ,%#]: = code line (_. go to. e(M(c)))
0 [,*]: = recogniser (else)

0 [,*]: = code line (_o L. e(Mc+2])}

0 [,#]: = recognizer(statement)

O[,*]: = code line (_. go to. e (Mc]));
head (0[,c]; go to master control

Comment The 1ist structure built up for if statements has the form shown in

snapshot form below. 21, Z2, Z3 are label equivalents generated by label., >B<,

SUS<,>else<, and >6< are the inserted recognigers for Boolean, unconditional

statement, else, and statements, respectively.

1\, ’Lon

’(’ )DL"ZID

U

Ds\’ll’l’ll)il“’ZJ"

l(’g’))’l””)'IMZJ"
(D(IDD)”SDDDD)DL.ZI"
*
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(D(D>B< zz’B)’O""’)OI“ZI’
(G (5 28, 22, 23), Lo 22, U<, go to Z1, >eln<. L. za,

Mn)o L, 21, 3

for statement begin:I [,*]; if I[,§] # letter then go to alam

for list
comma s begin
- recogniser(forlist) ;

A: = identifier accumulated

X: = A; iart (2,00,¢]);

ot = c+l; d: = c3 label (M[d); ¢ = c*1: e3 =¢

label (M{e]); next (2) (O[,¢]: = code line

(- Lo © (M{e])s Js List (Of,%1); tsrt (3,00,¢1) next (2)(0f,¢1}
3 = recogniger (forlist); next (2) (0[,,!]): = code line

(_e Lo @ (M[d1)s )5 next (3) (O[,¢])s = recogniser

(conpound); block 1ist (0[,%1); go to Ex 7 end -

A P(4] = *5'  P[1~2] # tuntdd? 4 P{1-2]F'whilgt then go to

AL Pl4] =*step® then go to step

Af P{1] = tupti1* then go to wntid

if P [1) = v, A P{4-2]=tuntil? then go to wntil 1
if P[4] = 'while' then go to while

1LH4] = 1,7, P(1-2] = tuhile’ then go to wmtil 1
if P[1] = *dot , P[1-2] = 1, then go to do 1

isrt (3,0 [,41) : o[,%]): = code line

(Lo MT. @ (H[d])): block 1ist (0 [,*]); next ()[c])w
isrt (2, I[,0]); next (2) (I[,41)s= t3mt;



Jabel (M[c]) ;

block list
until 13 begin

I,*]s = 2 5 go to Bx 7 end

isrt (5,00,¢1); £1 = c+1; label (M(£]); gt = c+l
label (M(gl)s O[,*): = code 1line (_. go_to,e (M(£]))
0 [,*]s = code line (_.L. e (M(g])); O[,*]: =

code line (_o MI. e (M(d]))s isrt (4,I[,¢1)

next (1) (I[,¢1): = X; next (2) (I[,§1)s= tsat
kG o (o S LA (st
Ex 7 end

isrt (6,00,£1);

O[,*]: = code line (m. st, t,1, —)

O[,¢1: = code line ( __ L. & (M[+3]))s variable (Q[pl).
isrt (4,I[,¢1)s next (1) (Il,el)s 3 Q [p])

next (2) I[,¢1)s = *1=* 3 next (3) (I[,0ls = X

next (4) (I[;¢4])s = *__*

next (2) (0[,41)s = code line (t,1.%,m.Q [pl)

next (3) (0[,41): = code line (—. <. t,1.0); cimcel
next. (4) (0[,41)z = code line (—oJ. e(M(ql)o © (M c]))
next (5) (0[,4¢]1): = code line (< L. e (M[c])

next (6) (0[,¢]): = recogniser ( forlist)

(o[ ,*])3 go to Ex7 end

1srt (2,00,¢]s next (2) (0[,£1: = recognizer

(forlisi:)s block list (O[,*]); isrt (2,I(,£1);

next (3) (I[,41): = X; next (2) (I[,¢])s = t3ut
o to Ex 7 end

whilelLegin isrt (6,0[,¢1)30,#): = code line (_. L. s (M(£]))

next (2) (O[,£]): = code line (_. =, t,1. {rug); ot=ctl




Label (1) next, (3) (O[,¢1)1 = code line (_. 3o & (M§1).® (M(g)))
next (4) (O[,#1): = code 1ine (_o L, e (M)
isrt (1,I(,f1)s = next (1) (I[,¢1)s = t4f?
next. (5) (0{,91)1 = recogniser (forlist)s block list (0[,*])

g to Bx 7 end
do 1t begin isrt (2,0[,¢1}s O[,*#]s = code line (_. MTy e (M[d]))
do 3t 0 [,*]: = code line (_. go_tn,e (Mlel)); goto O [,*] end

do 2: begin isrt (1, O[,c]); go_te do 3
" Comment The for statement is f.ho most complex control statement in 20" L,
Thus the statement for 1i=E), Ep, step E; until E, E; step E; while By By do S
would generate code controllad as follows:

i= E;  generated by for

—— e

Mra
iie= generated by comma

By <+ generated by éxpression analyser

lz-t’l
hbei.f ~generated by until
p=1i-

By
AL

pEmg
then

raar

L g
it= genarated by until 1
Es§



g0 to statemant: P [1]: = fgo to'; go to expression analyser
statement end: go_to master control

compound ends _9;_1:3 master control
block ends begin
Comment The foliowing code unravels all linkages between identifiers
established in ths current block. The example

zxr(eyxvx)xwszg(gyg(zxxyx)wasx)arw)
1234 567 8 910 111213 14151617 1819 20 21 22 23 24 25 26 27 28

where _ means declaration and (, ) mean block beginning and ending, reispsctively
and the order of ocoirrence being left to right would cause the following sequence

of actionss
1. Asmign x
2, Asaitn y
( 3. Block begin
4o Assign w
5. Enter x
6o Aiveady assigned w

]




| Block end:

)

7. Already entered x

) 8

9%

25,
260
27,
28,

Block end, 803 chain unsssigned x to assigned x (1.)
remove block begin (3.)

Already assigned x through chain

Enter w

Enter s

Block begin

Assign s

» Eanter'y

Block begin

. Assipn x

Already assignsi x

Tnter ¥y

Piork end. sos chain unassigned y to preceeding unassigned y
remove block begin (15.)

Enter w

Already assigned o

Enter x

Block ends So chain unassigned x to assigned x through chain (1)
chain unsssigned w to vnassigned w (10.)
chain unassigned y to assigned y (1)
remove block bagin (12.)

Enter s and chain (11.)

Assign £ through chain (25)

Assign w through chain (21)

Block ends So sll assigned Remove Block beging

begin Ht = K-1; if unassigned (1i:1) khan a0 to Bl 1

Bl 2

Bl 1

Af marker ) £

then begh ' H~1; go to B1 2 end
AL mmber > length [s]

then length [8]:s = mamber [r]

g0 to Block end 1

Mus = H

BL3: 1 if chain (T[MU]

then begin MU: « field (5, T(MU)); go to B1 3 end




Bl 42

Bl 63

‘then B1 73

Bl 53

Bl 8:

Block end 1:

Master control:

if_field (3, T(T]= field (3,T{MU))

thep go to Bl 5

Af field (2, MT]) # *(°

begin T: = T-13 go to Bl 4 end

Q: = Q-1

A£Q =0 then goto Bl2

8o to B1L 7

Af unaseigned (T[[T]

then begin field (5,7(MU]) : = T; go to Bl 2 end

Af block (T{T]) > ertblk

MU: = H

field (4, T [MU}): = field (4, T(T])

number [r]: = number [r] ¢+ norm field (3, T(MU]))
if field (4, T(MU]) = O

then begin MU: = field (4,T[MU]); go to Bl 8 end

field (4, TMU]): = T; go to Bl 2 end
if S1=0

then go to Pass 1 end

33 = S-1; go to_ master control

0 [,*]; if recognizer (0[,c))

then go to recogniser

_go_to block

2

Comment The table T is the identifier table. Its field structure is

<line number:>, <block marker>, <identifier>, <block number>,
<chain number>, <indirect>, <delta vector>,

91.



identifier declared: 1 _if field (2, T(K]) = trus
| | then ptom2
Ht =K
33 H: = H-13 If field (3, T(H]): = A
then go to ID 4
D 53 Af rield (2, T[H)}: = trve
then go to ID 2
g to ID 3
1D 2 field (1, T[K]: = K; field (3, T[K]])s = A
field (4, TMK]): = crtblk; field (7, T[K]]): = delta
K: = K+1; go to identifier declared

D 4s Af rie1d (4, TH]) = O
then goto ID7
MU = H

1 62 field (4, T[MU]: = crtblk

Af field (5, T(MU]) = O
then go to identifier declared

MU: = field (5, T{MU])

go to ID6
ID 7s if parema = 1
then begin field (7, T(H]): = delta; gc tn identifier de~
clared end
go to ID 5

Identifier encountered but not declared: 3
LComment This routine is entored automatically whenever any identifier is
encountered other than in a declarstion. The identifier isfl ;

Hs = K-1

e e et e i et T



IE 1:

I[ 3:

IE 23

Chain ¢ ;

Chain 1:

Asgembly code:

if field (3, MH]) # A

then g to IE 2

Af rield (4,7{H]) = ert blk

then begin correspondant:s = H3IE 4: go to identifier

encountered but not declared end

Af field (4, T(H]) = O

then goto IE3

ir field (2, MH]) # *(*

_then begin Hi=H-1; go to IE 1l end

rield (3,T(K1)s =A3 field (7,7(K])s =

union (f1e1d(7,T(K]), delta)sKi=K+1; go to IE 4

H: = K-1
Af field (3,MH]) = fiedd (3,T(KX])
then begln

£iald (4, T(K]) = field (4, T(H])
field (5,7(K]) = H; go to chain end

Hse H-1

Af H=0 then go to alarm
go to chain 1

bezin comment This code is machine code and its syntax has bsen described in

Part I. Basically the format is operator | operand or operator-» operands




AC 23

AC 53
AC 102
AC 9:

AC 9s

AC 63
AC 33

AC 11

Yo
Af machine operand (A)

,,,,,,,,, PR

go to alarm end

st (I[,¢1)3

iL field (1, MT [2]) = A

then kegin Hs = field (2, MI[Z]); go to AC3 end end.
go-to-alarm

seqe (V, AC 6)3

V[,*]; At = V [¥,c]; seql (G, AC 10);

G[;*]; def (W,0[,¢1); if A=WD/,*] then go_to AC 8;
Llse o to AC 93

copy (W[ ,#], V{,c]); go to AC 10

copy (V,I[,*])3 go to statement

Copy (MT{n], V); list G seq W (G, AC 5); seqe W(V,AC 5)
for Zi=l a__t_op 1 while MI(2]70 do

begin isrt (,G[,£]); Gig*)s = MI [2)5 I[,*]s Sewd

Ust (G{,¢1); if I[,*J=r(?

then begin S3=S+1j AC 123 isrt (G[,g))s G[,*]s=I[,*] end

A2 I [,¢] = *)* then begin St=S-1; go to AC 12 epd

AC 12

AC 113

20 to AC 12
if Si=0 then go to AC 11
20 to AC 12

o

AC 1: begin conment This code m&;ion analysers machine assembly code. It uass
the address expression analyser. The constitusnts of address expressions are

identifiers, integers, the arithmetfic characters + and -. The address expressions
are machine dependant and the analysis given is for the Bendix G-20.

e e e e e f—
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‘ ‘ !
| |
. AC 25 isrt (0[,¢1) : !
_ ' AC 35 if I(,¢] % simple variable+OA V I[,¢]70A + simple vardable |

. Y then go to AC 26
. if I [,4] % (aimple variable + OA)

then go to AC 27

if I[,¢1% (04 + simple variable)

then go to AC 27

2 1[,¢1 % (simple variable + OA)

Eg_n g_o_'_t-._o AC 30

4f 10,41 (0A + (simpls variable))

then go to AC 30

ir 1[,¢]1 5 (simple variable) + OA

then go to AC 32

if 1(,¢] % 0A + (simple variable)

then to

then go to AC 32

if 1{,¢1 Feimple variable + simple varisble

then go to AC 34

go to alarm
b}
Note: similar code need be written for occurrence Of{_.o
AC 263 MT AC 36
0[’*]3 » code lins (__o M(O)a e (A):: _)
B Ac 26§ I[,c]s = 10A'; go to AC 25

AC2Ts MT AC 35




AC 30

AC 323

AC 343

AC 363

MT AC 36

O[,#]: = code line (_. OCA(3). @(A). )3 mo to AC 28
M AC 36 .

0 [,*):s = code 1ine (_. OCA (1)s e (A)o_)s go_to AC 28
MT AC 36

0 [,#]): = code line (_, OCA(O), @ (A)); go to AC 28
$A: = simple variable identifier accumulated;
go to AC 36

t



9.

Appendix 1,

g .
| K 1.1 In declaration s add

Switch 1: If I [,f] = letter then go to switch 5
£ to slam
Switch 5¢ A: = identifier accumulated; delta [12]: = 1
MT identifier declared; SWi=A; mu := O
P [1)s = tswitch', go to. expression analyzer
1.2 1In the expressioh analyzer add
l.2.1 code relating to switch
Af P[4] = 5=t P[1-2]: = *switch' then go to switch 3
go to Ex 7
Switch 3, P [1] @ = [4~2]; i: ~ 1013 go to Ex 7
-4f P[1] = *,'  Pli-2] = fswiteh? then go to switch 4
Switch 4 begin if simple (P[1-1])
than begin code cénsta.nt ( e(sw) + mut = code line (_. go to,
(PL1-1))» ) mut = mu +1_end_ |
&lse begin code constant (e(SW) + mu: = code line(_.go to.e(TSW).
O[31: = (e go t0.0,I._) end )
go to switch 3 end
if P[4]: = *ewitch' thepn
begin label (TSW); isrt (2,([1,el)
0 [,#11 = (_.1.e(TSW))

block list (Of,%*]) y_..

geto Ex 7
- . 1.2.2. code relating to go to statements



go to 1:

go to 22

9¢.2

A2 CFIAT = BV PLAT ¥ R4J qpat) A P{1-2] = go 1o
thon-t local (P{1~1]) then g te gotol

elap go to go to 2 end
g to Ex 7
begin J: = J¢1; O [3]: = code line (_. go to. e (P{1-1))._)
B0 _to statement end end
begin ji= Jol; )[3]: = code line (I.9. e(P[1-2])._)
ETA: = block (P[1i-1])
J2 = 3613 0 [3]2 = code line (I.\f. e (ETA)._)
32 = 3#13 0 [J1s = code line (_ogo to. BA go to,_)
go_to statement end ond
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PART III
A Programming Manual for 20’\1.

1. Introduction

20\ 18 a programming language for -- in the main —- scientific
computation. There is, in the language, no extensive input/output facilities.
These are provided by procedures but a few sample such will be mentioned in
the sequel,

20" s - one language with one processor even though the progeammer
may write in 3 different modes: algebraic language, assembly language, or
list language and they may be mixed as desired by the programmer. Thus, forl
programs requiring -- for reasons of apeod and efficiency of storage (word
packing) -- total control over the machine's abilities the programmer may,
in continuous transition, sikip into symbolic machine language.

On the other hand, if he is doing extensive symbol manipulation he
mey choose to program more extensively in & list formalism.

Most importantly as a program is debugged it can be altersod from the
language which it is easiest to test the loglic of the program into that in which
it 1s most efficient to operate the program.

2. Programming Principles

The languagess used on computers follow very closely two fundamental
yrinciples of computer design:

(1) The nature of storage
and (11) The sequencing of control

The computer?s storage is divided into units called "words." These
are of fixed length--or sometime smiall mujtiples of units of fixed length.
Each word can be identified Ly & natural number called an address which, by
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the nature of mechanical devices has a renge, e.z., from 0 to 215, Words
store numbers and consequently we may say that an address is the name of a
problem variable if the contents of the word having that address change in the
manner specified by operations on that variable.

The storage is further characerized by destructive read-in and

non- destructive read-out meaning that each time in formation is stored in
a word the previous contents are replaced by the new information. However,

when information is read from the word the contents are restored on read-out.

Thus:

read in read out

the "new" the number back
number O

\‘/‘] old number
lost

L ad
-
-

In some applications the programmsr constructs, through programming,
& pseudo-memory called a stack or push down list, In this memory each time a

word is read into the same "cell" the previous contents are not lost but are
pushed down deeper into the stack. Here, reading can be destructive or not as
wished, But this is accomplished by programming and not by hardware. It is
particularly easy to accomplish using Tlists,

The second characteristic is aoqnonc:l'ng of ‘control.

Each instruction has an identifier called its label or name (absence
implies a blank label) and an operstion part.

In the computer each times an operstion is completed a pext is chosen
according to the rules
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(1) 4f the operation does not specifically identify the name of
its successor the lexicographic next is next to be exscuted.

(i1) 1if it does identify its successor then that one so identified
is next executed.

The source of computer flexibility is that the choice of (i) or (ii) in
any instance may be made conditional on the consequences of already accomplished
computation,

In the case of 20\ the sequencing rules are slightly more complicated
by the concopt. of the control statement. The control statement inducesa a
sequencing control over the statements within its scope. The scope is defined
as the set of all statements following until a punctuation convention is
satisfied, The lexicographic last is called the terminal statement., Then the
above seguencing rules hold with the additional rule:

(i11) 4if the current statement is the terminal of a control statement,
the successor is dotermined by the control statement.

Thus in ZOAL programing the programmer must bs constantly aware of
this inter play between ssquencing and assigmments of values to variables by
which his computational purpose is advanced.

There are two fundamental aspects to programming in ZJ\: one is the
programning of cycles or loops and the other is the amalysis of aritimetic
expressions, The semantics of the language has already been discussed and
this manual is thus concerned with principle and example.
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1. Programing of cycles or loops.

Almoat without exception every algorithm exscuted on computers containsat
leaat one cycle. For, without a cycle, every step of the algorithm would be-
exscutable at most one time. The execution time of the algorithm could then
be of the same corder as the time required to describe it. Ewen for algorithms
without explicit cycles, its availability in a standard form in a library {from
which refsrence and extraction are possible) imbeds the algorithm in the "library

cycle'?
oeew..,..._.} Extract the
algorithm identified as Y.s."
from the library and meke
8 copy of it
e
‘Employing the
current copy
execute the algorithm

l __’.> aeo

For each use the re-description time is effectively zero. We turn our atien-

tion to cycles within asgorithms.

A chain (of imstructions) is a sequimce of instructions Il,Iz,om,In asuch
that for each ¥, 2 < k < n, I, is the successor of Ik'-l and the predecessor of
Iysto

A chain which starts and ends st the same instruction is celled a vyglp.

A cycle of instructions clearly permits the same sequence to be carried
oul sevaral times. In programming we note the obvicus constrants on sycles
so that they are not carried out an infinite nmumber of times:

(1) Every cycle must possess 2 branch or comperison instruction (else it
could never terminate}, and

{2) At lesst one storage location must change its contents during the
course of a cycle satisfying (1),

The terminetion condition is of great importance snd is one of, or combination

R 5 .. 9
o .1 esn . teiwd s

R R
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4 counter achisves 1tw final valae afler gtepping throwd a sequence

(b) A relation is Yirst ssiisfied {or nob satisfied), B.8o, X < ¥s oF

(x ﬂy} andiaa» <y ¢ 3, ate.

In the case {a), the flow chari is of the foim:

set ths counter ‘
kY]

7

d

(

pagsed ita
final value {

/ has the Counted

W

s

of the cyels

|

'Ez:e«:‘ute the ingiructions

\:

L step the counter _j

]

[

RN v e e

In general the counter,; i, steps ﬁihx’ough a0 LwrerRging or & decreasing

seguence of velask wich vhe sridialization. the progrossion, and the termination

determined by fized funchions. An obvicus wotation ja for 1 = E‘l atep B, upidl)

E3 do < dngiruchions of whe oyele’

Lies ]
;

et . 1t

N
[‘Emcute the instractions of |

AL, L '

¥

! &

f

Lpmapsnmsmmrizron. o wowe st poemneas!

( Sign (E,) % {i-Byj >0 Q_____Y_.w-w

The cnarl bosouwss
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’ Sometimee the cycla econtinuay while an srithmelir retphion pequiting vai Do
. In these cases we may write:

++ fox 1~ E, shep By vhile B
Exercises:
) l. Draw the cycls chert for casa (b) of pagc 101,1
25

3,

Draw the cyele chart for the description ++,

How would the description «+ be modified for the case of ecyclirg until

.

R first becomss satisfied!

In many ceses oycles ars nec’id, Se@es Whthim She dmsteuctions of 4he cycls
18 the couplete spocifinetion of another cyecle. Using outli.a notation:

i

oy o

i )

oyt ol ‘ r. et e L.
czprocents two nosted blocks. Tha blocks whien cast b Logsatt are lohelued

initielize; C: check; S: atep. Using waremuheses to dndizabe eyule puistionulo

se £ind situvations iike: ( () )

a5 #bove, buy altee ( (o« VG I st
.
. doloun Ao el g ovecluaoing eyeles see w0

UMD IR R T

R T RS LT SR A Y. S BN B A DI C R S DU SR

Logloning aod oot of o oy

Ract Availahle Conv
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&ny seguence ol such symbols to debermine 1f 4t is an alloweble nested veuende.

Zo Modify Lo 8o vhal the maxbmum depih of nesting in such ssguened: 18 aow -

puied, €.g., {(({{(D)((()}))) has & maximun depth of 5.

which to eycle,

Often several progressions; say n, shara the some set of instructicns ovesr

1

This case may be treated in o simpls manner by inducing & master

cyele, k, which progressas in steps of 4 from 1 to n selecting ard applying each

of the progressions in turn to the instructions overwhich to cycle.

luvolves & selaction switch, T, having n steps:

Bys  §¥e 1S, H

R ]

G e

QILIRPPLVREAIEDS

d ;

[t

it

*‘ g“:%i“'
X

fieon’y

o

=

E? TN

l

Al

E«;«&wi !
=t

A2 .
ﬁn&tm&t&e‘mﬁ )
E_?L.‘?‘t cycled
e nen vy
[ go o ¥
By

ol

R
o

go to AE

Grrrmeersar -

P ANV ¢

¥

ER———— |
B
" go %’

2 e T T ety e

PSR §

- -M.w,«m‘g

T, jgo Lo Py

AT DA IERNCAT) I bt

’.1,'2, g0 ¢ 3 ?2

acsren

s e e A AR

ne k]

Tbogo e P,
Fed | ¥4

B mmsa i sains p8S A

O e * Vmaty

¥
a1
Vg Sn §

s rm g it

W?‘r{% A“
S S—
gt
® V"‘ :
go to A

P prasnions ik Sns e be Lrenbed by bbis bectriane,

The ehert



Examples of eyeling:
1o Nested eyeling _
Order the rumbers (in) Ajs Ags ooy Ay 80 that 1> § implies that(Ai?z(Aj}a

St&rt.«m._l

[ Jemied |
(il |

Stop

2o Shoved cyeling
Outside of progreseisns with geps it is difficuli to select a simple

grampds using dhared oycling. Nevertheless }s:ﬁns;w.er the problem Lo compates

£ (. ) for 0<¥<s5 in staps of Ooly foa.,

o0 X~ 0 (0.1 5, where




e
P(E)s (B, Bl
ez -1) (B%YF) 1<8¢2
G*VE)+(Red@-2) , 252¢w0
Otherwise undefined
and
1000
BeX o 2 %2 s ¥ integral.
v[%] |

Some of the cyecling here can be ahared.

The case where the extent of cycling is dstermined by a relation is

treated in & similar way, except that a cycle counter may or may not be

prasent. Thus:

X eljs)

2
5

yel (X« %
2
(.k~ iy %} |2 E) ml Stop
- [..m.__

{

le-y

cycles, not on a counter, but while(mesning as long as) {y - X | 2 Eo Ths

d

105

J//

above chart represents Newton's methed for finding the square of A,

Exsreines

1. Add a counter to the above chirt sz as to count, the number of cycias t"c{u; red

peiore exiling.




Lo Por all Iivtegers 1,2,.- 05 N ganeratw the sequencs of irgegers "-’"“{ winioh

ara prime, i.e., possess only 1 and themsalves as factors, Hint: If X i3 an
integer its largest factor different frou itself must be < yX.

3. Suppose a continuous function f (X} is spacified for a <2 X ¢« b and that

z{a) ¥ £ (b) < 0. Let the X- intepcept of the straight line betwsen {a, £ (a)
and (b, £ (b) } be a first approximatt of a zerc o {X). Using & sequence of auch
strajght lines develop a sequence of approximants terminating the process as soon
as two successive elements of the sequence differ in magnitude by less tlan a

given §0,

2. Propositione or relations.

Ar influential componsnt of évery computation is vhe set of discrizdnations
which influence the branching and eventuslly determine terminating condiiions.
Egch such discrimination is & question whieh 1s, suach Lime, answered yes or noo
But each such question is ’isc a propogitiop having & value fpue (1) or {alpe
(Flo Sinee propositions take om only twe values these may be represented by
L {T) or O (F). Thus the question: "Is X> 77 may bs treated as & proposibion
P {X) = {X>7) which ir. reality is s propositional function.

If Ey anc E, are arithumstic expressions, 6oy X + 9% % andn r;:;;;(;;)ﬁ,
and R is an grithmstic relation, e, Pp<s2s Ss =» Fo then (Ej R E2) i called
an elementary {arithmetic) proposition.

Since propositions take on tha. valugs @ and 1 it is convenient to define
fropesitional varisbles which take oa only these values, This permits uwz to

write equations iikes
b$=(E) RE,)

Propositionsl varisbles ers acustimss cslled Boolean variabiss; they ., too,
e clenentary proposibinms.

Compound propositiony sre fopmed from slemaniary propositiens by eorbining
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the Ilstter undsy basic propositionsl opervabions, These besic operations are:
{1,) Complemsntation {=): If P is & proposition then so is- P defined ass
Pe ®aPw ) , Ps l-gP s 0, or in tabular form:

¥, 9P
5T
1 §o¢

-~ esdisfies: - (7P} = P,
It P and Q ars propssitloms then so are:

(2) PVQ defined by the table:

_P R
olo o
g JeTe
1'0]%
1]11

V i3 called the inglusive or, i.se, PVQ 18 trus , if either or both of
P and Q are trus.
(33, PAQ dofined by ths table:
‘PAQ
0
0

0
1

4

HOHOW

O OM

A is enlled opd, i.9., PAQ is true if and oniy if P is true and Q is true.
{1 P o Q definod by the table

218 1Pag
ofo 1
ol1l 1
110 0
111 1

D iz called implicatici.
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= is called equivalence d.es; P = Q is true if snd only if P and Q heve
the same value, _

The zbove tables are ca.llad tx'ui,h tables and each binary prepositionsl
oparation defines amd is defined by such 2 tabla,

Unlike binary functlons inwolving opsrations on real numbers to form veal
nunvers of which there are non-denumerably many,thers are only a finlte numbaer
of binary operations mapping proposltionsl varishles to propesitionu) variashles,
Ererceisens

1. How mavy such binary propositional operations are there?

2. If PyQ,R, are propositisonnl varisbies how many propositional fupstions
of 3 variasbles are theve?

Hinss Start the ecuwuntiag smslysis frow the truth table.

3o IfQ is used for sxelveive op fom., either {bub uot both of) P evd Q
are true for PL$ Q to be wive, constrast the truth table and represent ¢ in
weira of {1}, (23, (3}

I8 ia olten guite coxvenient to syntiesise vropositional expressions i'rom
the erath table, In oxder to do this we investigate soms properties of thess
wperetions, parbienlarly (1), (2), and (3}, The Lollowing idertitics are
sagly proved by truth tebles:

(1} PV GP) =1 () PA-pj=0

(2} Pv1-1 {5 Prlwp

i3 * 70 =P {6}y PA Q=D

Rl T ORI




Propositions obey the distrubutive law of A over V:
PA(QVR) =PAQVFA Ro

Both A and V obey the associative law:
Pe Q= R = ( PoQ)°R = Po (Q°R);

and the commutative law
PoQ = QoP, » where ° means V, A o

Consequently, ¢.9.,

(7) PV (PAQ) = Po
By constructing the truth tables it is demonatrated that

(8) =+ (PVQ)=~Pi=Q eand

{(9) - (PAQ) =-1P V4Q.

One defines thet V is the dual of A and vice versa; and -+ -1is the dual of —
ard vice versa.

It S is s propositionel axpression juvolving only Vo, A , —1, ard
slementary propositions, then the dval of 5 is obtsined by mplﬂcing) in turn )
from left to right sach cccurraace of V, A , and — by its dual.

Examples

s = (v,P} A{?{'Q vm‘_s))) Note:Q means - — Qo
= CIPJAT1QAS)

then dusl (8) s PV {Q V-1S) 4 =750

A peneral theorazm is that: -1 S = dual (S) for any propositiomal function.
In order ot to have to write parenthases to excess, as in the case of

arithestic operstors, an assumsd heirarchy of propositional vperations is

definsds

~1 before A before V bsfore = bafora =.

RPN, U
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Now consider the case of a propoeitions) function, F, of, say, 3 wariables

P, Q, and R, .80, F (P, Q, R) definec b. the table of 27+8 entries:

PL1O IR |F (PaQaB) .
0]0(C [fo
. s 00 Y 1Dy
01110 1
011 1
L1010 |eoo
1101
Lila
1114 189

Where each I, is 0 or 1, Then F can be Moxpe.ded" iznto a Ysun¥ of elght ‘“oroducta™s
APA Q4R Afg VAaPA-QARAT ¥ PAQ AR Afn VeooV FPAQARASL;

for soy va.ues given to Py, Q, and R csuse one and only one of the eight producta

to differ fron sero {l.e., be L ) so that its velue is 1/\,fk and £y, is the funetion

value cocresponding to the given triplet of valuss for P, Q, and Ke

Eemmples
P QB F
g 0 O 1
g9 0 1L 1 F =-iPA-Q4~R V1PA~Q 7B
¢ 1 00
¢ 1 1 0 YPAGARWPAGAR
1000

. 1010 eqFARAE TR Y

[ S T < I
11 1 1 PAQAGSR VR 5

="PAQ VTV PAQ
= ~{PVQ)VPAQ

= P=Q

e e e e e T
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In programming, propositional functions are used to deterwrine branching
patterns in programming. If P is'a proposition we represent it in flow
charts as:

Q . $ and a reversal of labels is

while QuP is that obtainsd in permuting Q and: P.

‘While the positional affect of ' FVQ and QVP is the same, we will see later there
is sometimes reason to choossone over the other.
We 1l now apply the foregoing to a specific example: Evaluste amd print
F (X, Y) for Y=0(1) 20 and for Xs0(1) 20 L
In English: F(X,Y)= Fy (X,X)= X% [X2/3] 4£0<X <3 or 7 <X <11 but
not X divides Y or X even; should it not be X2 + [X2/3] then
F(X,Y) = Fp(X,Y)= xz - X[ ﬁ]/!*l) unless g is even in which case

F(X,Y) = Fy (T,X) - F, (T + 1,0,

Conments: (1) The above is somewhat ambiguous. It can be clarified by
roquiring ite statement in ah wnsubiguous problem language. (2) What precisely
is moant by "for Y= 0O(1) 20 and X = 0(1) 20"? Does it mean simultansous or
iterated cycling® What happens if 11 < X? Is it the sense of the problem %hat
the scope of the first gr is "< X 1i", or "7 < X 11 but not X divides T, or
the preceding coupled to Yor X even"?

T e e e e = e T
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These and similar questions can be answered by the ube of operators and
parantheses, thusly:
for Y=0piep 1 yntil 20 do
begin for X = O atep 1 untdl 20 do
begin £ (0<X<3 V7 s'x <11) (divides (X,Y)V Divides (2,Y) )
then F 3= XP2+ antier ( X2 /3)
else begin IiL (divides(2,X/2)
then F : = X2 ~ X x entier (X$2/3) / (1)
else F i = Y2+ entier (Y£2/3) = ( (F1)T2 - (T41)x entier
( (Ye1)42/3) / (Xe1) )

print ( F) ond end end
halls

[ ——.
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k> Bncoding of algebraie t"c:»mmil.aeO
~ Everyone is familiar‘;vith formulge, Some examples are:
| a) tsx+ 4%y
b) t = (xg) % +y/(24 1))

e) z=2¢* (r+afx)

The expressions on the right are said to define the variables on the
ieft, In computation the counterpart is that the right hand sides are
ovaluated, using the current values of the varizhlesz gppearing there, fhus
defining & value for the vaviable on the left. Tiis tims sequence 1is
emphasiged by using a sign like €—or = in place of = thus:

a) bex+hhy

or B) % 3= (x~3)% (&g +yflarp)).

with this sense of s= (which will be used herealber) a forXalas

=t txPEE
has computational meaning, i.e., definss a spepifisd set of aciions to
bs carried out. Thus, in Newton’s method for compuning the sguare root:
of #a*, the formula

& g '%: (= +§~)

yivids the iterants successively, with each new one computed from the
prezeding one.

In computetion éach variable may be said to ba the name oi!a gtorage

. iocation and its conteris the {current) value of the variable. ~In the choves

eleazrly, the new valve of 2 xeads over the previcus value and uvnless elis-



w hsre retained it would be lost when read over. '

’ Much of what we have learned about formulae is based on the assump-
tion that forimlae are generally simple, i.e,, not too many symbols and
not teo many expressions involving repeated division or expoentiation,
In computation these assumptions are no longer gensrally true, Thus
while "x2%nis quite unazmbigucus, "x22 * i is l;ass clear uniess the
printing ‘is very precise, and then what of x’*“*?'q ? Consequently, the
formilse dealt with have the property that:

All formtlae are represented as finita linear sequences of esaractars.

Thus such formulae do not contain either superscripts, subscripts, or
exponients, HNaturally a representation needs to be introduced te take thair
place, All such representations ars based on a partition of the alphabet
of reconizeble characters into disjoint classes. For example, such a
partition might be:

a) The set of operators: M40, Wb, wsu n/u 0 f",, Hogmlt,

b) The set of two sided delimiters: #(", ")n,

3) 'The set of numbers , e,g., 2, 10.5, 110,.

4} The set of variables: X, MJ, ™U3, ete,
These latter two classes m deseribed by exarmpis. Haw are they to b2
deseribed explicitly?

In 2 subsequent set of notes a method for their formal description
will be given.

' Then a formale
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Y:=C*(A+DI+E
gould be represented by the linear character string:
Y s=c®(s+DI+E}(2+n2)

where Q denotss exponentiation

<)

The opersters ave binary; They have two associzted operands, e.g..

#m (1) for the underiined operators the associated operands ave:
A+D I |
nd2
ER LY
EQ(2 +rp2)
A+DI+E(2+R2)
6% (a e+ B2 rj2)
and, even
T Gx(a+or+Rf(2+vga)

The assignment of operands to operstors is determined by:

(2,1)
(2.2)
(2.3)
(2.4)
(2.5)
{2.6)

(2.7

£5.) The direction of scan of ilie formmls, e.g., from left to

righs
and (i1) The heirarchy ol the opeitors, e.g.,

@Y:ei‘om # pefore / befors .- before + before s,

However all operations within a matcehing set of parentheses ars accompliished

befora the operation for which the match.ng sst of parentheszs delimit an

operand. as (2.3) preereds {2.4).
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Exereises:

116

1. Por the following, represent the formulae by linear strings of characters:

A+

IR Wereite DEEATNTYILA WY

¢+

Zym X4 C

2

evaluation as in (2.1 thru 2.7):

The Following charts each evaluate i single foramla.

ke
fees e n]

1:2 “~B - wl

nel @

PP

Bebh 'éJ

§

M+ 7
o2-d

[:AE 0 rH

S A —
E % F % (R - M)

T x
EFY 4 4
For tha follswing
¥ Z#RH®PHL®* { 4 + B)

X23/%27 # 28/ + 1
see FRER3 + W/L/M

forimliae list the cider of operationa in their

ﬂg‘ Jeppv—
XL
_____ LY
I xepn g
—_—
[ﬁ%ﬁ
[zt

[z 7]

Find them,
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In exercise 3, the flow charts can be easily converted tom:qus,
with the possible exception of the computation with the operator f . ¥e
(ofer its analysis, Note that the charts ecan still not be converted inte
code until the nature of the operands and opsrators is clarified as to
whether integer or fractionsi,since conversion may be required,

Thia elarification proceeds as follows:
The analyvais should be based on a cascaded treatment of expressions, The
simplest expression is that containing one opsrand B, e.g., X, 3.4, 26, ¥,
&té‘g Then the natural definiiion is:

The arithmotic of an kj is that of its oparand,

How how 13 the arithmetic of an operand specified? It is natural that
ite arithmetic be unchanged during a compuitabion, 86 the rulas iss

The arithastic of an cperand named by an identifier is de¢lared by whe
programmsr, nob by virtue of its identifier form., Such a declaration wili

have the forme

" refl X, MY, TIPS, ROOOS ete,
and ) integer 2%, by P, ete.

Uperands named by numbers are defined to be those numbars, Any such
maber eonsisting of digits zione is understood to be an integer, 8.Z..
11, 7, 12103 but nob 21.k, 0056, 1.5 8, 2,7

Thess latbier are representations of {raciional nuxbers.

How 1f both simple operands;, 67 and 82, are of the same arithmetic,



that by vthe expression Lormed fi‘bn; them 51 op B wauld reasonably have
that arithnetic. However the division of two integers does not. necess-
arily produse an integer, Ner dess exponendiation, as for exawple, 3P -7.
An aeceptable soluticn s to have twe division opeabors possessing the

sign / and £ . The foruer af?.wa:;\fs, yieldz a frachtional yumber while the
latter alwaye yields an integer, | But wiat integsr. 6.8., 37 7, 26 % 2
= 47 = 87 Conventlion has ¢stablished the definitions
L gy e sign (afb) L Ia!ifa
Thms for the above, (},‘ 12, =6, Yhile use of / would give {in & typieal machine

reprosentation) 4285716350, 1250000052, ~ 5875000051

Fxponentiation may be trested as follows for e 4 b.

AL b ds an dutegair and

I

if ¥, them a ¥ a .. ¥ & (b times) and conscguently of
she sanwe acitmastic type as a.

AL b= 0, snd if a # 0 then 1 of the sams type as &
glge underfingl.

Aif B¢O, and if & # O, them 1/{e¥a.. *a), (The deucninatar
hag -b faebors) aad is of type peal else undefined.

% is real and
if 200 then emp (b¥* In(z)) of type fractional
i2 &0, then if D0, D of typ2 fractional. glse

i ko aurl@zwefi

o € 0D, slveys undefined,

iw
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 The nse of conditioml epuessiore :ﬁnrymtml,inmimtm tance
7+ =1Lx <O then O slae (x1) -
dofines y as the discontimuous function

0 x<0
ye= ‘
x+1 x>0

Similarly _ o
br=(ifxsOthencAx>yalomgNaq V" (x27) ) ve
dafines (Biolean) b in terms of & conditional expression.
It is worthwhile to carry out by hand the following computations using
expressions ' |
real ri, re, rd 3
intezer n, 1, J 3
n =5; |
ri e= n/(n+15) 3 -
rb = n+ 6/(6* rl + 0.3) 3
i »ni=n-~-23
j t=mrb-1i3
ra s« (J-1) %21 % (rb-4) 3
rlimra¢rben+is+s JeB8irl;
rb:a(rl-rb*n*j—ra)*(rb-:)+ra;
j tmnmlen+t (J-2);

i smn+tyray



The following example ut:u.tn's -‘Boolean expressions

mua,l‘bl
integer ia ;
Boolsan ba, bd 3

by )
ia
rb
ba
re
ba
bb
ba

= 75 3

=53

tm= 3% ra-2%ia
mrhb>ia i1ad>rg

gm 2% (ra - ia) -1

1= ra >ia ba}

= (ba=rb>ia) ra<rdb}
11 (ba bb) ;

The fillowing statements generate a sequence of values for SUM.

Find the first four of these values.

loop:

real p, q, SUM ;
integer n 3

n =13

p 2:=0.53
SUM = O 3

q =13

SUM 3= SUM ¢+ q¢/n 3
q t~q¥*p3

n s=n+1;

go.to loop 3
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5« Program Units

In a program there will be statements and declarations, Section 4.l.l of
- Part I gives the important rules of how to join statements and declarations
together to form a programs The main difficulty of this section is that of
punctuation, particularly of when to Mu semi~colon and when not to. .The
difficulty is directly commected 'ﬁith the use of the delimiter gud. As & guide
the relevant rules may be restated as follows: |

PUNCTUATION RULE 1: The first symbol following any statement (whether
basic or not) must be ons of the following three:

H olse e

PUNCTUATION RULE 2: Any ssquence ... opd and end <. must always be
terminated by semi-colon or glse.

Punctuation rule 1 follows directly from the syntactic rules governing
statements (Sactions Lelel, Le5.1, Lobel, and 5.4.1). Punctuation rule 2
follows from observing that an gpd, whenever it occurs, is the last symbol
of soms statemsnt, and then applying punctuation rule 1.

5.1 The concept of block structure.

Block structure is critical to ZOAL for it allows the efficient use
of storage through overlay. Critical to its understanding is the concept of
global and local relative to a block.



The concept local may be illustrated by an mmplo of a program structure
a8 followss
1s begin real A, B, C ;

* & & o O

2t P: As=B+2%C 3

3: begin real A, D 3

4s Q A=2%B+C3
5t Di=2+B+Ag
. o & & ¢ @
63 P: Csiew2%A-D3
® O & o @
73 g toP;
*” & & & &
8: Ry
® @ o & &
9: end 3

s o & o b

10t Rs goto!'."z

e m...
Hera we have & larger block, from 1 to 11, containing as one statement &
smaller block from 3 to 9. In the outer block we work with the identifiers
A, 3, and C, which are local to this blocks In the statement at 2 a valus is
assigned to this A. The immer block introduces a new, local, A and a D.
This A, then, has no relation to the A of the outer block, which is now screened.
The variables B and Cj on the other hand, are the same in both blocks. At 4
they are used to assign 2 value to the local A. This valus is again used to
2ssign & value to the local D at 5. mueomtimmbnommtgo_eﬁr
of the A of the outer block. At 6 @ value is assigned to the non-~local C,
using the local A and D, Labels are autoaatically loca’l. Thus the labels Q
and P at 4 and 6 are only accessible from ineide the inner block. The go fo
statement at 7 will therefore lead to the statement at 6., The gp_to statement
at 2, on the other hand, will 1sad out of the imner block to 10 because the

identifier R, being not declared in the inner bdlock, will be non-local. The
moment this passage out of the inmner block ocours the local variables A and D
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are canplstely lost, The go to statement at 10 will lead to 2 because the
label P at 6 is local to the inner block and thus inaccessible from 10,
Using the above example follow the action of the following program and
find the values of those variables which are defined at the label STOP.
begin real W, S, B, C

1: W =83

23 S =33

3: B 3=2%#W~35;

4t C t=B-W;3

begin roal P, W ;
53 W t=B-2#C3;
b3 P «=C 2-B3
(K A\ W =P -2%W;
82 C t=C+ )3
93 L W> 1 thep g0 %o AA ;
10: § =sW-P+S
eud
1l W ssW~-C+ 53
SI0P:
end

The scops of a label comprises, so to speak, all those statedents from
which the label may be sesn,
The conespt of scops may be illustreated by the example given, The scopes

of the different quantities are as follows:

Scope includes statemsnts at
A and P in outer block 2; 10

B C, ad R 2, by 5, 6, Ty 8, 10
D, Q, &nd A ard P in irner block hy 5, 6,7, 8
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An important step in the planning of 2OAL program is the subdivision of
the process into parts which may conveniently be written as blocks or procedures.
In order to be able to do this the progremmer must have & clear idea of the
properties of these units.

Blocks are useful for expressing such parts of the program which form a
closed process. A block is indispensable if in a process an array is needed
whose size depends on the results of previous calculations. Such an array must
then be local to a block. In addition any other quantity (simple variable,
lsbel, switch, procedure) which is used only internally during the work of the
block, but which is not useful when the block is complsted may be declaresd to
be local to the bloek_g This is particularly useful when different blocks of a
progzrsn are written by different programmers. By using blogles the programuers
wiill only have t0 agree on the non-local identifiers of the blocka, whfl@
inaside sach block the programmer is free to choose the identifiers of working
quantities. |

Procedures hava two other usest

Abbreviation of amll ad-hoc functions; and & form of communication
of closed processes between prograums,

In particular they offer the optim of recursive definitions of processes.

iny bloek msy be converted into a procedure by adding a heading to it.
Tho heading will attach en identifier tv the block and ususlly make sows or
all of the non-local identifiers formal parameters. Whers the block in
question is wriiten specially for the program this conversion may bLe efficient
only if the mechanisu of the block is used two or more times with differeat
non-local quantities; corresponding to two or more calls of the procedure,
since & call of a procedurs is a more elaborcte process than a simple entrance

into the correspording block.,



Frequently the formulae of a program may be shortened through the use
of suitable function designators., As above this will be economical only if the
corresponding ad-hoc procedure is used more thau once during the program.

An example of the use of chained procedure calls is furnished by the
following:

| b
Compute y-f H(x) dax
a

To(x)
vhere  H(x)= G(x,t) dt

Ty(x)
amd  G(x,t)z l/ sirP(xt) + cos®( (1-x) t)
Tt the procedure SIMPS, ( F, L, U, A )
Ivaluates the integral of the function named F from L to U to a precision &

then the program would be as follows:
begin real as b, v ;3
real procsdure H(p); real p ;
begin real progudyre Ri=p 2+ 3xp )
real procedure R3=p 3 -2xp3;
real procedure G(n) 5 real n
begly C = sqrt {(sin (pxn)) 2 +(cos({l -p)xn)) 2 ) epd G3
= SIMPS ( Gy Ry 8, °5197h) spd H 3
real procedure SIMPS ( F, L, U, )
{ZOAL code for a Simpson's rule
progran
y 1= SIMPS ( H, &, b, °510~%) e0d 7»



6. Declarations
Declarations are really quite straight forward except in the case of -
arrays, procedures, switches, and maeros,

6ele Arrays
The detailed expianations of Sectioms 4e2e3e1 - 4e2.303 are relevant
in a case likes
real n ; arey All 3 10] 3
ni=2;
Aln+1) tesns=n+ 23
Section 4+2.3.1 of Part I produces:
A(3] t= n 3=
Section Le2.3.2 of Part I gives the value of the expression as 4.
Section 4.2.3.3 of Part I assigns 4 to n and A[3].
Pollowing ithe code given beow will clarify the eonsequences of non-
dynamic arrays
bezin integer i, J 5 intemer asyem Alls3, 1:2], C[0s2] ;
Ji=4i =]l
ClJ-1) 1= A[3,1] s= Jim i ¢ 2% J+ 23
AMlawi, C[J2-3%] ~3] = J~24%1
clA [2,2#3-8] -3] 3= L s= k+ § 3}
ALC[3-1+11/2, 4#A[1,1] -3%1] 3= A[1, 2¥(1~))] s= A[2,2] - A[1,1] 3
1= -A4[3,2];
Je=i-§3
A[L, -3-2] 36 c[1-1] = 7 3
A[A[2,2], C[1] - C[0]] s= C[1] s= 2% i ;
STOP: gnd
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Dynamic arrays are useful in matrix routines. Thus & declaration pesl
array X[ 1: n, 12 n] allows the block in which the declaration is imbedded to
use only storage necessary, say, for a linsar equation routine.

6.2, Procedures
 In the case of procedure declarations ths following should be noteds
(1) The procedure declared i3 part of the block in which it is
declared so its non-declared variables may Yeommnicate'! with those in the block
in which it is !imbedded.,

(1i) In the case of pareameters not celled by value - they are
evalustod gpew every time they are ’dt.uodo‘ Whereas paramsters called by vaiue
are evaluated gpce at the very begimning of each exscution of the procedure. :

(111) Exits from & procedure involve a return to blocks and
consequently may cause re-initialiging of storage assigmments. Thus ing
begin real x;, J ‘
aray Alls 5]
Ji=J+1l
begin resl B
array Alls 3]
mocedure M(p) resl p
Legin integer 1
A x<Othan Al1] = x glas go 3o L
"7 e
L: Al4)t=x .epds

two different arrsy elemsnts are assigned the value x.




Switches are simtlarly tricky.
Thus, the kind of situation referred to by the remark of Section 5.3.5
of Part I may be illustrated by the following examples
begin switoh W e= tt, Qo+ 2] 3
switch Q = Ql, Q2, Q3 3

* & & o ¢

At Dbegln resl n g
TTs Eﬁﬁﬁtﬁ:
siad block A

and

T™ha go to statement at TT refers io W[2], The designational exprression
for W{2] is Q[n+2]. Into this expression the varisble n enters. Owing to the
déeclaration pes) n in tho head o; block A the statement TT is outside the
seope of the n of QIn+2]. Comsegquently the go to statement is undefined.

As on exercise follow the action of the following statements and wite &
1iat of the lebels to which tho go to stitements successively refer and find the
final values of the variabless

bezin integer n, 5 3

@riteh S t= 5B, 82, 53, TP 3

oiteh W i= T, SIn -5 + 7] 3
ns=73

e go to Sln-4);

SBs ng=n-13s
Bi*8s+n}
o ko Win - 2] 3

53s n=u-=-2;y
Bg*n-23
gtoun-8-~1]

STOPs

e — e i
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Macros are particularly simple to understand. They are, after all,
blo:ks of code which are substituted into the code wherever they are called.
After substitution their effect is precisely as though they had been put there
originally by the programmer, one .must be careful about the rules for substitu-
tion of parameters. They are: '

(1) A foroal macro parameter can gnly be an'identifier?t, For all
o¢currences of that identifier in & macro definition, an instance of & macro call
will cause that identifier to be replaced in a eopy of the definition by ths
actual parameter. Thus the replacement of the formal parameter x by the
string x x will not create a non-terminating string: X X cee X 200 since
the replacement is into a copy of the definition. |

(i1) The actual parameter, ¥ dolimited by a set of matching
parenritheses replaces the corresponding formal paramcter with the outermost
parentheses stripped.

Thus:
wasre S( A, B, C)
xt=A+ ¢t
B
) @+ (cC)
and

A call occurring in the code:
S (ain (p * x), (S (sin (p * x), ¥y t= ocs(p *#x), (B +2) ), ((( 3))))
will cause
firstly xst=sin(p#x)+ t
S (sin (p * x), ¥y t= cos(P * x), (R + 2)
T|Q+ (((3))
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then: xtesin(pex) +t

x t= ain (p#*x) + ¢

¥ t~ cos (p * x)

*|Q+(R+2)

TiQ+ (((3))
will be produced. Notice that parentheses serve three delimiting functions in
this example,

7. For Statements

For mteunta are the most complex control statement in the language 20 L.
Finding the values assigned to the controlled varisble in the following for
statements and the final value of as

begin real ps q» r» 8 3 integer k, m ;
p=lji qs=23 rz-B;st-o;
1f.su:ks-pwnq-p»x'*w -qdo 8 =8+ k;
Jorms:s=qatepruntl]l 7¥*¥qdo® =8 -m3
'mks-z.a,zmzmsma:-uz*k;_
formsssg+ 45, m+2yhile 8<0dos t=8~m3}
for k s~ 1 glep 1 yntil 5 do
forms=3gtep -1luntil Odos:=a+ k+m3
will clarify the concept of the for statemsrt considerably.,

For statements are particularly useful for exscuting operations on
vectors and matrices (described in 20/A\L as arrays). A simpie example is the
addition of two vectors VA and VB to give a third VC, This may be expressed as

array VA, VB, BC [1: n); integer i 3

for 1 1= 1 atep 1 until n do VC[1] := VA[41] 2 VB[1] ;

Note that the quantity n cannot be declared in the same block head as the errays
VA, VB, VC (cf. Section 5.2.4e2 of Part I).
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8. Lists
T lists have been reported on elsewhers. Examples of their use are
given in the article in "Commmicetions of ACM" (April 1960).
Lists are represented by X [a, b] where:
X is the name of the list; a is p, / , or V mesning prefix, left, or right-
site section, respectively s b is ¢ (cwrremt) or * . :

p has a 3-bit formg f e ¢
0 eleent -

® =1 118t

f.{ourecr.
1 indirect
8_0'non-t0m1nll
thormiml
Thus p = 101(2) or p = 5(10) means a direct terminal-list entry. The indirsct
means referral to a word having structure ppt sequenced by Tlist sequencing
modes. In particular, the referencing may be to arrays declared within 20
The empty list is represented by (,) and the listg
(,l2x} ,(, f2.200,21} , (3} ), {1.a} )
refers to 20 L objects X, Y, and Z[1,2] (arreys, varisbles, lists, procedures,
stcs; while a itself ir stored in the list. The arrow is cmitted in the
above representation.
As an example conrider the procedurs
mocedire equal ( x, ¥, B)3 Mst x, y3 Boolesn B
beglp seqw (x, exit); seqw (y, exit); E := frue 3
1s i& x(p,*] = yip,*]
then begin
i x[(L,fl=3d, f]
then go.to 1
slse if x(p,fl =1

k% WM o v




khen g0 t0 1 and
E s= false
exit: ; opd equal.
which checks if two liste are equal.

132
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{actual pazamster ), def 3.2.1,ha701
{actuzl perameter 1list), def 2.2.1, LaT.l
(actual parameter part)s def 3e2e1, loTol
{adaing operator), def 3Jo3.l

alphabet, text 2.1

arithmetic text 3.3.6

(aﬂtme’tic expx‘ession), def 30301 S‘[nt 39301019 303013 301101, h02015\
L’.oéol, 50201 text 30303

{arithmetic operater), def 2,3 text 3.30l4

aryays text 3ololiel

array, synt 2.3 Seloly Soliol
{axray declavation), def 5.2.1 synt & texbt 5.2,3

{array {déntifier), def 3.l.1 synt 3.2.1y LoTols 5o20l text Zo8
(array list) def. 5.2.%

{avray segment) def S.2.1

{assignment statement), def lio2.3 synt Lolel fext 1, L.203
(basic statement), def lLolol synt LoSol

{basic symbol)} def. 2

begin, synt 2.3, helol

(block)y, def Lalol synt LeBel text 1; Lol.3gs

{(bleek head), def hLolol

Boolean, zynt 2.3 5S.l.1 text 5olo3

(Boolean expression) def 3olicl symt 3, 30301y heZol, LeSol, hobol,
%t 3alie3

{Boolean factor), def 3.l.1.

{Boolean primary) def 3.4.1

{Boolran secondary), def 3oli.d




{Boolean terwm), def 3ol.l

{bound pair}, def 5.2 el

{bound pair 1list) def 5.2.1

{bracket} def 2,3

{code), synt Soliol text ho748 5okiob

colonz, synt 2035 3c2cl; Uodoly LoBSoly LoBody LeToly 50261
colon equale®, synt 25 3le251;, LoGoly 50301

comrma g synt 2::.39 30101, 3u2019 hoéo].g hn?ol, 501013 502315 503019
50401

comment, synt 2.3

comment convention, taxt 2.3

{compound statement) def. Lol 1 symt Le5.1 text 1
{compound tail), def. Liol.i

{conditional statement ), def Lo5el syt holol text Lobe3
{Gaeimal fraction) def =2.501

(decimal mmber), dof 2501 texsh 205.3

Cecimal pointay, synt 2.3, 2650k

{declaration}, def 5 synh hLolol text 1,5 {complete section)
{declarator), def 2.2

{delimiter} def 2,3 synt 2

(designationsl expression), def 3,601 synt 3, lLo3el, 503.1 text 3.6,3
(adgit), def 2020 symt 2, 2oliely 2.501

dimension, text 502,3.2

divide / «= 5 SYRL 2,35 30301 text 3o30L.2

doy, synt 2.3, Lodod

(dumy statement) def Lolol synt liolol text Liolod
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el

(sirple designstional expression) def 3.6 1




e
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{apecification part) def S.liel text 5oli.5
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(switeh desigrator) def 2.6.1 text 2.603
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{type) def So.l.l synd Sollel text 2,8
(type declaration); def S.lol synt 5 text 5ol.3

{type list) def 5,131 .

{unconditional statement) def lolol, lLa5.1
{unlabelled basic statement), def Lol.l
(unlabelled block) def Lolo.l

{unlabelled compound) def l{:ulol

(unsigned integer) def 2.5.1, 3u5.1
{unsigned munber ), def Z2.501 synit 3o3el
undil, syob 203 Lobol text Lobolie?

{upper bound), def 5.2.1 text 5.2.h

valve, synt 2.3y Solled
value, text 2.8, 30303

(valne part), def Solel text lLoTo3.1

(varisble) def 3.1lol synt 3o30ls 3oliedls Lo2oly Lebol text 3013

{variable identifier), def 3.l.3

while, synt 2.3; Lebel text Lobolied

The zbove portion of the Index ig edapted from ¥Report
on the Alpgorithmic Language ALGOL 40" which appeared
in Communications of the ACM, Vol 3, No. 5, May 1960,




SIMBOLYC LODING AND LIST PROCESSING

addrass chain s Gef 3.8.1
address expression , def 307
address interpreter ; def Lo8.i
code line o def Lo8ol

copYs texb 3e2slte2

elementary address s def 3.7.1

equivalent declaration dsf 50603

indirect address expression s 5yt 3.T.1
iasert, text 3.2ol07

instruction designator def L.8.1
library deelaration def 50704

sty text 3020l 52

list procedures, text 3020l.2
1ist subscript expressiony texv 3.8

logicsl expression , def 3.5.

macre declaration o def 5.5.1 text 5.5.3
maero designator o def loB8ol
macro identifier s aynt Le8.l

maéro statement  def Lo9.9
next s text 3.20h.2
operation designator def Lo8.1
pair list def 52601

geQo s texT 3020h07

shift measure s Gef 3.0.1
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